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1 Basic concepts

1.1 Interest rates.
1.1.1 Notation

Definition 1. R, 7 is the per annum interest rate on a deposit from time t until
time T
For each interest rate the compounding frequency must be determined !

Example: As an example, let today’s interest rate for a 10-year pe-
riod be Rg 10 = 10%. If the interest is annually compounded, then,
after one year, you get interest on your interest (i.e. compounded
interest), so if you deposit an amount Ny today then after one year
your amount has grown to (with annual compounding) No(1+ Ry, 10)-
Because the interest is (annually) compounded you will, in the sec-
ond year, receive interest on the interest so after two year the amount
has grown to No(l + R0710)2.

If your interest is compounded monhtly then your amount grows,
after one month, to No(1+ Rg';”) and as it is compounded, you it will

grow to No(1+ %)2 after two months, ... and to No(1 + %)12

after 12 months, ...

If we generalise this, and denote the compounding frequency as m subperiods
of a year, then we find that the interest earned between ¢ and T is given by:

m

R mAt
J— t’T J—
NT_Nt<1+ ) At=T—t
m

where R{"; is the per annum interest rate at time ¢ for for a T-year deposit
(starting at ¢, so from ¢ to t + At) and with a compounding frequency of m per
year.

Remark 1.1. It is important to note that:

e T is expressed in years, so one month is 1/12;

e m is the number of periods per year;

o Ry is per annum.

If we let m — 400 we name it continuous compounding and we haveﬂ

Np = Npefer®t At = (T —t)

Note also that, if n is virty small, then (1 + )" = 1 4 nx so if mA¢t is small

RY'r m R+

~1+

m m

then we have (1 + mAt. For small At i.e. for At < 1 we

work with m = 1 so we have:

Ibecause limy,— 400 (1 + %)m — %



Nr = Ni(1+ R pAt), At = (T — t)

Property 1.
Np = Ny - Ifp, At = (T — 1) (1)
where
e For continuous compounding I'{", = el At
Rrm \ mAt
e For discrete compounding I'y = (1 + *TT)

e For simple annual compounding I'{’ = (1 + Rf}TAt)

1.1.2 Conversion formulas for compounding.

For continuous compounding, a 1 euro amount grows to 1 x efle. At after a time
At.

For compounding with m subperiods we have after At an amount of (1 + %)
. m_\ mAt .
These yield the same amount if eftr8t = (1 + %) — efir =
R”m m
(o)

m

Property 2. From this it follows that the continuous compounding rate with
the same yield as the m—subperiod compounding rate is given by:

m m Rm
(150 < (14552
? m m

Biz ), therefore

t
m

RC
Moreover, it follows that e = (1 +

Property 3. The m-subsperiod compounding rate that has the same yield as
for continuous compounding is given by:

-
Ry 1
tp=mle T —

If we want to convert from an mj-superiod compounding frequency to an
ma-subperiod compounding frequency (e.g. m; = 52,ms = 12), then in a

R™ mi1At R™2 mao At
similar way the convesrion follows from [ 1 + tf) = (1 + “T) or

m m2
my mi mo ma
(R

Property 4. The mq-subsperiod compounding rate that has the same yield as
for ma-subperiod compounding is given by:

2

R2N\ ™
R = 1+ — —1
¢ =M1 << + m2> )




1.1.3 Daycount conventions.

If the time periode At is small and in days, then there are several ” conventions”.
Note that time is always expressed in years, but a year can have 365 or 366 days,
some months have 28 (29) days, some 30, some 31. This ”variability” lies at the
source of the so-called daycount conventions to express 1" or At in years:

e Actual/360; count the actual number of days in At and take 360 days for
a whole year. Note that this can result in e.g. 365/360 > 1;

e 30/360; assumes that one month counts 30 days and one year counts 360
days;

e Actual/actual; based on the real number of days in a month and the real
number of days in a year;

1.2 Discount factors.

The discount factors are derived from these formulas, in fact, the above formulas
learn how an amount NV; grows between ¢ and T

Definition 2. A discount factor is by definition the inverse operation: it gives
the value of an amount Nt at an earler moment t < T or it is the value at t
expressed as a percentage of the value at T'.
Therefore the discount factor is the value DF™(t; T) such that Ny = DF™(t;T)-
Nr.
So we find that:
1

DF™(t;T) = T T) (2)

Obuiously, the discount factor also depends on the discounting frequency.

This implies that the formulas [l for interest rate compouding can be rewrit-
ten in terms of discount factors:

3)

1.3 Forward (interest) rates.

R, 1 was the (annual) interest rate at time ¢ for depositing money for T years.
If ¢ is in the future then this is called a forward rate. So a forward rate is an
(annual) interest rate for a period starting in the future and lasting until 7. As
before, the compounding frequency must also be defined.

Definition 3. The forward rate at from t until T', fyr is by definition Ry 1

R, fort >0 (4)



Example: As an example; we want to know today (2016) an interest
rate for a deposit starting in 2020 and ending in 2025.

The forward rates can be derived from the interest rates known today, i.e.
at t = 0. This is in fact rather easy.

If we deposit an amount N; between ¢ for a time T then it grows to Ny =
I''p Ny (see formula [1)) where:

. . c —
e For continuous compounding I'}", = eRir(T=0)

e For discrete compounding I'}%, = (1 +

T—t
Ry m(T—t)
T

e For simple annual compounding I'f - = (1 + Ril%(T — t))

If T deposit, today an amount Ny until 7" then I have two options that are
schematised in figure

Figure 1: Schematic solution to find the value of a forward rate.

m C1n, — m
0,t (= Rt,T) ?
| | |
[ I I

0 t T

m
ROT

)
\

e I deposit it at the rate R’y , at the end we will have N;l) = Nol'g'p

o I first deposit it at R : during a time ¢ and then during 7' — t at the

unknown forward rate f[,”T = Ri"r_,. Then the amount grows to Nj(?) =
Nol'ghI'Yr

Both should be equal, because if one is larger you will of course all choose
that and that will change the demand and thus the ineterst rates. So arbitrage
makes both the same.

m — m m
Therefore I'g'y = I'g", I

Remark 1.2. Note that we assumed here that there are ”free lunches” are eaten

and in "equilibrium” there are mo riskless profits, i.e. we assume abscence of
risk free arbitrage opportunities.

Property 5. In order to find a foward rate, one should follow the procedure

schematised in figure |1, i.e. compute the accrued interest over [0;T] in two
different ways.



It follows that I'f'y = I'gy X T'{"p. In words this means that the increase over
[0; T is the product of the increases over [0;t] and [t;T].
As the Tty depend on Ri'r = [{"p we can derive f[r.

Remark 1.3. Note that the foward rates depend on the compounding frequency.
Replacing the I' in Ui = I'gly x I'{'p_, by the definitions below one finds:

e continuous compounding: eo.rT = et x eftir(T=1) from which you find
that R 7T = R§ ;t + f{ (T —t), from which it is easy to find fir.

m N mT m \ m-t m_\ m(T—t)
e for discrete compounding: (1 + RO’T) = (1 + @> X (1 + Rt‘T)

e for simple compounding: (1+ R§ 7T) = (1 + Rj,t) x (L + fir(T — 1))

Remark 1.4. You do not have to learn these formulas by heart, just remem-
ber the procedure schematised in figure (1| and use the appropriate compounding
frequency to find the equation. Then solve the equation for f[p = R"p.

1.4 The term structure or the yield curve.

1.4.1 Definition

Definition 4. A zero (coupon) rate for maturity T is the rate of interest earned
on an investment with a payoff only at T'. So there are no coupon payments (or
intermediate interest payments) between t and T .

One can compute a zero rate for every maturity 7', i.e. for T being, one
week ,one month, ...

Definition 5. The term structure or the yield curve is the function that maps
T to the zero rate for maturity T. Graphically it has T on the horizontal axis
and the zero rate corresponding to T on the vertical axis, i.e. in the graph you
put the couples (T, Ry 1) for different values of T.

Definition 6. A ’'normal’ bond, contrary to a zero coupon bond, pays interests
periodically, e.g. you get the interest every six months.
A bond has several parameters:

e A principal or a face value; this is the amount the interest is computed on;

o A maturity; this is the date at which the principal is paid to the owner of
the bond;

An interest rate (including the compounding frequency);

The periodicity of the interest payments.

10



1.4.2 Bootstrap forward rates.

The yield curve can be expressed in two ways:

e in terms of the zero coupon rates: so at 7" on the horizontal axis you find
Ry on the vertical axis, so graphically you plot (T, Ry r) for different
values of T'

e more unusual but also used is in terms for forward rates; for 7" on the
horizontal axis you find fr_a:r on the vertical axis, so graphically you
plot (T, fr—a¢,r) for different values of T.

Both can easily be transformed to one another via the formulas supra.

Remark 1.5. Note that, using market data and bootstrapping, we can find
several pounts of the graph, i.e. (T, RS)T), for different values of T'.

In that case we get a scatterplot, we could fit a line through these points like
e.g. a linear regresstion of the type R p = Bo + 51T + €. However, a linar
shape does not seem to fit quite well, therefore a non-linear regression is more
appropriate. One often used function is the one proposed by Nelson-Siegel. In
stead of a linear shape they propose R§ p = (a1 + asT)e™ T 4 ay +e.

Using bootstrapping we can find several observations (T, R&T), for different
values of T, and using these data points and regression techniques we can find
estimates of &1, G, &z, . The equation for the yield curve, with which one can
compute the rates for intermediate time points, is then given as

R, = (a1 + iot)e™ %t 4 Gy, (Nelson-Siegel)
Note that,

e fort =0, i.e. the very short term zero rate, it is Rf, = (61 +G20)e %" 4
Qg = Q1 + Oy

o fort = +o0, i.e. the very long term zero rate, it is Rf | . = Qu

see exercise [11.1.9]

1.4.3 Duration of bonds.

Assume you have an asset with cash flows ¢; at datest = 1,2,...,T. This might
be a bond (in which case ¢; are interests paid for ¢ < T and ¢ is interest and
principal amount) or a share of equity (in whic case the ¢; are dividends). Note
that some of the ¢; may be zero and the do not have to be equal.

Taking the zero coupon bond with maturity T ( see section as a special
case, the time you have to weight to receive cash payments is T because you
receive all the money at maturity (this is the defintion of a zero coupon bond).
We say that the duration of the bond is T years.

If you have a "normal” bond then you will receive periodic payments between
0 and T, and at T you also receive the face value. Obviously, you do not have

11



to wait until T to receive cash, so the duration of a (coupon bearing) bond is
less than T

Definition 7. The duration of a bond is the average time (in years) you have
to wait until you receive cash payments.

If we discount at rate y then the present value of the series of cash flows
(interest payments and interest+face value at T') is the price of the bond: B =
23:1 ce™Y*t |t in years.

T
B = theint (5)
t=1

For a zero coupon bond (only payments at T') this becomes B = cpe ¥*T
where cp is the sum of interest and face value. If we define the duration as
—yXxT
T x % then this will be T. Therefore we define duration as:

Definition 8. The duration of a bond is the weighted sum of the time values
where you recieve cash, the weights are the fractions of the total present value

Ctefyxt

and the duration is

paid, wo w; =

T

D T B Ctefyxt
= Zwt Xt= 4B Xt (6)
t=1 t=1

Note that, by the above, it holds that for a zero coupon bond D = T

because the weights w; = 0 for ¢t < T and at T the weight is % = %, SO
D=04+0+4---+T=T.

We can look how the bond value changes with the rate, i.e. %. Using
equationwe find % = — Z¢T:1 t-ci-e Y*t or dB = —dy E;TFZI t-cp-e YL

From equation |§| we find that 31 t-¢; - e ¥** = B D such that:

Property 6. The percentage change in the bond value % R % is given by
dB .
— = —dyD 7
B y (7

or percentage change in the bond value is equal to the rate change times the
duration (with a minus sign).

So the duration is a measure of sensitity of the bond value to interest rate
changes. This explains why the duration has become such a popular measureE|

2Duration was invented by Macaulay in 1938).
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2 Forwards and futures

2.1 Definition of a derivative

Definition 9. A derivative (or contingent claim) is an instrument whose value
depends on the value of another, underlying variable.
Ezamples are forwards, futures, options, swaps, ...

Remark 2.1. The underlying asset can be

e Traded: eramples are

— currencies;
— equity;
— gold;

e Non-traded: examples are

— interest rates;

— credit quality of a company;
— temparature;

— anflation;

Remark 2.2. In "pricing” derivatives their fair value will often be determined
using arbitrage. Therefore it is important to keep in mind the distinction between
consumption assets and investment assets.

Consumption assets are held mainly for consumption (i.e. short-term) while
investment assets are held for investment purposes (long-term).

seldomly works for consumption assets.

Remark 2.3. Derivatives can be used for several purposes; hedge risk, specu-
lation, aribtrage, change the nature of an asset, ...

2.2 Definition of a forward contract.

Definition 10. A forward contract is an agreement between a seller and a buyer
to sell or buy an asset at a certain time in the future for a certain price.
The parameters of a forward contract are:

e an obligation to buy or sell an asset (e.g. gold) in some currency (e.g.
euro);

e a quantity ) of an underlying asset in units of the asset;

e at a specified time in the future, i.e. with a time to maturity T

13



e at a certain delivery price (or contract price or excercise price) K
(or X)

obligation to sell/buy: The party that is obliged to sell at the future time
period is said to have a short forward position, the one that is obliged to buy
in the future is said to have a long forward position.

Remark 2.4. A forward is just an agreement between the seller and the buyer,
so writing the contract does not cost anything.

2.3 Delivery price of the forward contract.
2.3.1 Delivery price derivation - arbitrage

The price that is agreed to be paid in the future is called the delivery price of
the forward contract or short the forward price. Note that this is the price that
is in the contract. We will see that the contract itself also can have a (fair)
value, so it is important to distinguish the delivery price in the contract from
the price of the contract.

The ”forward price” (i.e. the price in the contract) is a price for future
delivery, so we need to find out a way to fix that price in a "reasonable” way.
These prices are derived using ”arbitrage arguments”. Let’s see how it works
for a forward price:

” Arbitrage” means that we try to find riskless positions that are profitable.
So let’s analyse the following combined position:

1. We write a future where we agree to sell a forward at someone else, the
delivery (unit) price in the contract is K. We also have to fix values for
T and @ and the underlying asset in the contract;

The cost of writing such a contract is zero of course.
2. We borrow money at the bank to buy an amound @ of the asset on the
spot market. The price in the spot market today is of course known and

let it be equal to Sy, so we need to borrow .5y and use this money to
buy @ amount of the asset on the spot market.

Note: it is assumed here that we can always buy the asset on the spot
market.

After a time T this combined position yields:

1. T agreed to sell the asset at a price K, so at T we receive Q X K;
Note: it is assumed here that taxes have no impact.
Note: it is assumed here that there are no transaction costs.
2. after T' we have to pay back the borrowed money and the interest on it,

assuming continuous compounding, this means that, at T" we have to pay
Q x Spe™™ to the bank;

Note: it is assumed here that one can borrow at the risk free rate.

14



Note: if the possession of the asset would imply any profits
or costs (e.g. with consumption assets), then these have to be
included in the reasoning. If ip are the total profits between
zero and T', valued at T', and similar for ¢y then this becomes
Q x Spe™T —|—c[£:’T] —’L'L}]:'T} , where i[TO;T] , C[ZQ;T] have different forms
depending in the type of income/costs included in 7, c. Note that
i, cr are valued at T'. If we formulate it in terms of discounted

values to ¢t = 0 then this becomes: ) x (So + ch;T] - 7:5”]) e’

3. Therefore, at T we receive @ x K and have to pay Q x Spe’”.

If Q x K would be larger than @ x Spe”” then this a (positive) profit and
nowhere did I take any risk. Of course, if things are so easy then I will write
more forwards like that and borrow more money at the bank and buy at the
spot, so, because of an increased demand, this will increase r just as well as Sy
and both amounts come closer to each other. If ) x K would be smaller than
Q x Spe"T then I will loose at T, so I will not write forwards, and thus not
borrow and buy at the spot, therefore r and Sy will decrease !

So we find that, after arbitrage, the ”fair value” for the forward price that
is in the contract and that is decided at t = 0 is K = Fy = Spe””, where S is
the spot price at t = 0 and r is the risk free interest rate. Risk free because the
position we have taken in entail no risk, so the bank will grant us the risk free
rate for that loan.

Note: it is assumed here that risk free arbitrage opportunities do not exist.

The fair value for the delivery price in the forward contract is given by:

Fy = (84 5T = {6 gnt

We will make some elements more explicit, because that will seem to be of
big importance for currency forwards:

Definition 11. The fair value for the delivery price in the forward contract is
given by:

EUR/Asset EUR/Asset EUR/Asset .EUR/Asset\ roT
Fy = (So + ¢, 0.7 — 2, [0:7] e (8)

where

° FOEUR/Asset is the price in the contract, i.e. the price agreed to pay

at the future period T';

. 5UR/ASS€t 1s the spot market for the asset today;

e 1 is the risk free rate today;

e we assumed continuous compounding (e™T );
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EUR/Asset
€0,[0;7)
t =0 (so the type of compounding is important);

are the costs from keeping the asset in [0,T], costs valued at

.EUR/Asset
® %o,0:7)
t =0 (so the type of compounding is important);

are the profits from keeping the asset in [0,T], costs valued at

Remark 2.5. Note that, the way we derived the formula, if we sign at t = 0
a forward and we take for the delivery price X this value of Fy, then there is
no profit nor a loss at t = 0, i.e. if the prive in the contract is X = Fy defined
supra, then the value of the contract at t =0 is zero.

Remark 2.6. We have different terms and factors where compounding interest
rates is required. be very carefull which one to use, they may even be different
/./-,./

E.g. for the income, it could be that they are At < 0 so with simple com-
pounding, while for ™™, the T may be far in the future, so certainly not simple
annual compounding !

2.3.2 Delivery price when the asset has a profit that is a percentage
of its value.

In the previous section we saw that assets the delivery price depends on profits
earned between [0;T]. A special case of profits arise when the profit is a per-
centage of the asset value and when the profit is compounded. So let us assume
an asset like that.

As in the previous section we compare two alternative strategies:

1. Write a forward to sell an amount @ at a price X at T

2. Borrow money and buy at the spotmarket for a spot price of Sy;

The second alternative requires you to pay back the loan at T; SoQe’” as
before. However, we have bought Q units of the asset and each unit now earns
a percentage ¢ of its value, so at the end we have Qe?” units of the asset.

e Continuous compounding:

Therefore the Qed” units of the asset cost us at T an amount of SpQe"”,

rT
or at T a unit of the asset will cost S&f;} = SpeT=4T = Gye(r—aT,

e In the case of discrete compounding,

with a similar reasoning, we will find e a cost of @ x Sp(1 + %)mT for
r\mT
Q(1 + L)™T units or a unit cost of SO%

e With simple annual comounding

with a similar reasoning, we will find e a cost of @ x So(1+rT") for Q(1+¢T)

units or a unit cost of Sy gi;g
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So, for an asset that yields profits that are a percentage of their value
and that are compounded the delivery price will be:

e Continuous compounding;

FOc,E‘UR/Asset _ SOEUR/Assete(roqu)T

e Discrete compounding;

Fc,EUR/Asset _ SEUR/Asset (1 + 7%
0 =5 A+ Lymr
m

e Simple annual compounding;:

Fc,EUR/Asset _ SEUR/Asset (1 + TT)
0 ’ (1+4qT)

2.4 The (fair) value of a forward contract.
2.4.1 Value of a forward contract at maturity T

If, at ¢ = 0 we sign a forward contract with parameters K, Q,T and the asset,
then after a time 7" we can compare the delivery price in the contract to the
spot market price a T', i.e. Sp:

e If you are the seller in the contract, then, if

— St > K, then you have to sell at K but you could have sold it at the
spot for S > K, so you have lost money, or your profit is negative,
namely K — Sp < 0;

— St < K, then you can sell at K while at the spot you would have
had to sell at S < K, so you win K — S > 0

Summary: For the seller, i.e. the one with the short position in the forward
contract, the profit at 7', valued at T, is Profity = K — Sp, for every
value of St;

Graphically, in a graph (S, ProfitT)lﬂ this is a line with a negative slope,
the higher S, the more you ”loose”. This is shown below, where the line
is red there is a loss, where it is green there is a profit.

3This is St on the horizontal axis and Profity on the vertical one.
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Payoff short position at maturity

e If you are the buyer in the contract, then clearly the position is oppo-
site:

Summary: For the buyer, i.e. the one with the long position in the forward
contract, the profit at 7', valued at 1" is Profitr = St — K, for every value
of ST;

Graphically, in a graph (S, Profitr) this is a line with a positive slope,
, the higher S, the more you ”earn”.

Payoff long positionat maturity

K /

2.4.2 No physical delivery.
At T, two things can be done:

1. The seller buys the asset on the spot at St and then supplies the asset to
the buyer and the buyer pays K per unit (at T');

18



2. The seller pays an amount St — K to the buyer to buy back the forward
contract, the buyer uses K of his own money and using this K and the
St — K of the seller, he can buy at St on the spot market.

The latter is what mostly happens, the contracts are bought back before the
expiration date and physical delivery seldomly takes place ! So the market for
deliverables is a ”paper market”.

This makes it attractive for speculators; indeed, they do not need any assets,
they just have to write a contract (but as seen in the course, they need margins).

2.4.3 Value of a forward contract at a time t,0 <t <T

We saw in section that, when there is a "mismatch” between the contract
price K and the spot price at T, St (which is unknown when the contract is
signed) the contract itself has a (fair) value.

If the value is not zero at T, then it will obviously also have a value at t,
0 <t <T. We denote that value as f;.

Section learned that, for a long position, at T it holds that fr =
St —K. At t < T this value has to be discountd with the rate at ¢, it is therefore
at t equal to fre (T = (Sp — K)e (T,

Of course, at t < T the value of St is not known, we only can know the fair

value namely (S, + ) — ilfT])ere(T—1),

&;weﬁndthatft::(ua-+c?T]—i?ﬂqyde—ﬂ<—1()e—rAT—ﬂ.
If K is (at ¢ = 0) choosen at its fair value given in 8] then we find that for

a long forward position and with continuous compounding:
f& = (Ff — F§)e (T~ ( Long position ) 9)

where Ff and F§j are both computed using the formulas:

Fy o= (St e i Ther =y (10)
Fy = (So+ )™ —iliTero(™=0) (11)

So we find that,
If K is (at t = 0) choosen at its fair value then fy = 0:

e If the delivery price in the contract is chosen at its fair value given in
then the contract value at the start is zero;

e In other words, the fair value for the delivery price in the contract is that
value of the delivery price that makes the value of the contract zero at

t=0.
Similar formulas can be found with discrete compounding:

Tt

= (" = K1+ E)*m(T*” ( Long ) (12)

where F/" and F{§" are computed with discrete compounding.
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Remark 2.7. To already make an analogy with option valuation that will come
later, we can also find the value of the contract using a “replicating” portfolio.

Assume we are at t an we make a portfolio of (a) short position in a future
with exercise price X and maturity T and (b) borrow money to buy the under-
lying on the spot market. Then at T we have to pay back the loan or —Sye”(T—1)
and we recetve X because of the obligation to sell in the short forward posi-
tion. Therefore the value at T of this replicating portfolio is X — Spe”™ ™1 and
discounted to t this becomes (X — Sye™T =)= (=) = Xe=r(T=t) _ g,

This is the same formula as supra because when X is fixed at t = 0 it will
be set at the Fy supra.

What is important to note here is that (see options later) the number of stock
in the replicating portfolio (later we will call this A) is exactly 1. So we find
that the A of a forward is equal to 1. Thus to make the replicating portfolio risk
neutral we have to make a portfolio of one unit of stock and one short position
mn a forward.

Note that 1 is also the derivative of the forward value.

2.5 Futures versus forwards.
2.5.1 Differences between futures and forwards

A forward contract is a taylor-made contract between a seller and a buyer, they
both agree on the underlying and its quality, on the amount, on the forward
price, ...

@ buyer

Obviously, if they are taylor made, they fit the requirements of the buyer
and the seller, but they are mostly of low interest to other agents. Therefore
their liquidity is low, i.e. it is not easy to sell these to someone else.

To increase the liquidty a more standardised type of contract was created,
this "standardised forward” is called a future. So the underlying in the future
is a well-defined asset of s very specific quality. The amount in the contract
and the maturity date are also standardised. This standardisation will make it
more easy to sell it to other agents, so standardisation increases the liquidity.
Obviously, this comes at a cost; a future is less flexible and if you want to hedge
your own asset price, it might be that there is no future contract that perfectly
fits your own asset. So the hedge is approximate (this is one of the causes of
"basis risk”, see section .

Another distinguishing feature is the parties involved in the contract; a for-
ward is "over-the-couter” (OTC) while a future is traded on an exchange. The
OTC contract is an agreement between only two parties, the seller and the
buyer. In a future contract the ”counterparty” is always the exchange; so if you
want to sell a future you sell it to the exchange, therefore the exchange is the
Central Counter Party (CCP). Similar if you want to buy, you buy from the
exchange.
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Obviously, if all these contracts pass through the central counter party, then
all the risk is centralised at this central party; if you buy a future from the
central party and at T you cannot pay, then the central party has a loss be-
cause of your credit risk. If this happens with many customers of the central
counterparty , then this central counterparty may go bancrupt. Therefore, ev-
eryone participating on the future exchange will have a daily settlement of the
profits and the losses. If you buy a future today, and tomorrow the prices have
changed, then you have to put a "reserve” called a margin at an account with
the central counterparty. This process of adapting the positions daily, using
margins, is called marking to market (MTM).

This marking-to-market (or margining) reduces the credit risk taken on by
the exchange.

2.5.2 Marking to market; re-write future contract daily.

To illustrate how this ”marking-to-market” works in practice let’s take an exam-
ple. We sign a contract with the CCP to sell at T" in the future. As we already
know, the future price (i.e. the price in the contract) is determined such that ,
at the moment of signing the contract, the value of that future contract is zero.
Obviously we know the spot price of the (standardised) underling today, i.e. Sy
and (in the simplest case) the future price is X = Fy = Spe™”

When one day has passed, we know S; and F; should be S;e” (=D, The
contract was signed at ¢ = 0 so in the contract we have X = Fj, where Fj
was fixed ”yesterday” as Fy = Sge"”. However, the day after the price should
be Fy. If Fy is different from Fy (and this will usually be the case because S;
may have changed or r; may have changed) then you have a profit or a loss
(depending on whether you have a short or long position or whether F; > Fy
or vice versa). This profit (or loss) is put on your margin account that day (or
withdrawn from it if you have a loss), this is exactly the ”marking-to-market”,
and the contract is re-written with a contract price X = Fy .

So in stead of ”accumulating” the value over the whole period ¢,7T', you get
paid every day and the profit (loss) is paid on (withdrawn from) your account,
while at the same time re-setting the value of the contract to zero (because you
got the money on your account, so the total must be reset to zero). Setting the
value of the contract to zero is the same as re-writing the future price in the
contract to X = F; (see supra).

This daily marking to market does not take place with a forward contract !!
For a forward the only exchange of money in a forward is at ¢ = 7" where (for a
long position) you receive Sy — X = Sr — F0 !

This can be schematised as follows as below; on the left hand side we schema-
tise the marking-to-market for the future, on the right hand side the settlment
at T for the forward. Assume that T'= D/365 (we use days because marking
to market is daily)
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For a future (left hand side) you make a contract with the Central Counter
Party of the exchange. The initial price is, as usual, such that the value of the
contract at t = 0 is zero, i.e. Fy = Spe"”. As you are on the exchange you also
have to deposit an initial margin mg (which serves just as a guarantee, you get
it back if you quit the exchange). For the forward you find another seller (e.g.)
and Fy is identical.

After 1 day the future is "marked-to-market” meaning that the value F} — Fy
is added to your margin account and the contract is re-written such that its value
is zero (because you were paid the value on your margin account), i.e. the price
in the contract is re-written to make the value of the contract equal to zero.
This is shown in the second line.

For the forward there is ony settlement at ¢ = T', so in the first row nothing
happens.

The other rows are similar.

t X (future) margin (future) X (forward)

0 X = FO mo X = FQ

1/365 X:Fl m1:m0+F1—F0 -
mo+F1—Fy

2/365 | X = Fy my= ‘my 4+F—Fl=mo+F—Fy

3/365 X:Fg m3:m2+F3—F2:m0+F3—F0

T X=Fr=8r mp=mo+ St —Fy St — Sy

After T" we can see that our margin account has grown from mg to mg+ S —
Fy, or we received Sy — Fy from the future (this amount could be negative),
while for the forward we receive the same amount at 7T'.

2.5.3 Are prices of forwards and futures equal ?

The above schematised situation in the table may be misleading, at t = T we
receive the same amount, but could it be that the intermediate payments for
the future make us earn (or lose) interest on the intermediate payments ? Could
that have consequences for the being equal of prices of forwards and futures ?
(empirical results, see slide 41 and next, show that differences may exist. )

Property 7. If the risk-free rate is constant’| and equal for all maturitied®| then
forward prices are equal to future prices. This also holds if the risk-free rates
are a known function of time.

This does not hold if the interest rates are stochastic, i.e. uncertain in the
future (which is usually the case):

Let us try to show this in the simples case; the risk free rate is constant and
the same for all maturities (but the reasoning is the same for a known function
of time).

4This is the interest rate for a loan of 1 year is the same in 2015, 2016, ...
5This is the interest rate for a loan of 1 year in 2015, is the same as the two-year rate in
2015 ...
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Let Gy be the future price (in the contract) at t for a future ma-
turing at T and F; be the forward price (in the contract) at ¢ for a
forward maturing at T. We have to show that Gy = F}, Vt:

It holds at ¢t = T: This is obvious since at maturity both prices
converge to the spot price at T, i.e. Fp = Sp and Gp = S
and therefore Fr = Gp.

At t =T —1: Build a portfolio where

e you go long on a forward with X = Fp_4
e you go short on a future with X = Gp_4

This costs nothing, you just sign contracts !

Then, at T, the profit from the long position is S — X =
St — Fr_;. Indeed, at T you can buy (long position) the asset
for X and sell it in the market for St, or you have Sy — X.
The profit from the short position is Gr_1 — Gr. Indeed, you
have to sell at Gr_; and you can buy at G, or you get Gp_1 —
Gr = Gp_1— St (we have already shown that G = St in our
first step).

For the whole portfolio this gives S — Fr_1 + Gr_1 — St =
—Fr_1+Gr_1.

At t = T — 1 the portfolio costs nothing, so if at ¢ = T this
would not value to zero there would be arbitrage opportunities
and this will yield a zero profit at T', so Fpr_1 = Gp_1

At t =T — 2: Build a portfolio where

e you go long on n forwards with X = Fpr_o
e you go short on one future with X = Gp_»

we will try to find a value for n, but it must be possible to
compute that at T"— 2 because if not we do not know how to
build that portfolio.

At T—1 we close both positions,we have to be carefull here,because
for the forward we do not receive anything unitil 77! So at
T — 1 we must take the value at T" and discount it. Therefore,
from the long position we have n(Fp_1 — Fr_o) but this is re-
ceived at T so we have to discount to 7' — 1. As interest rates
are contant and the same for all maturities (note that we are
not at 7' — 2, it may be in the future) we can discount this:
e "Atn(Fr_1 — Fr_s), here r is a fixed number.

On the future, the profits are marked-to-market daily, so you
do recieve Gr_o — Gr_1.

So at T'— 1 you have e’TAtn(FT,l —Fr_9)+ Gr—o— Gr_1
as the value of the portfolio. As this value was orginally zero
(we just signed contracts), this should be zero else there are
opportunities for arbitrage !
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We did not say how we would fix the n, so we can still choose
that, as long as n can be computed at T'— 2 |. So if we choose
n = e" then, as r is known and constant, we can compute n
at T — 2. In that case the profit is e "2t (Fp_y — Fr_5) +
Gr—o —Gr-1=(Fr—1 —Fr_2) + Gr_2 — Gpr_1.

For the same reason as supra (Fr_q — Fr_s) + Gr—o2 — Gp_1
should be zero, but we have already proven that Fp_1 = Gp_1
so we find that it must be that Fr_o = Gp_o.

At t =T —n: similar as for T — 2.

Remark 2.8. Note that, in the step t =T — 2 we "replicated” the
future by a portfolio of n forwards to make it riskless. In other words
we hedged the future using np_o = € 7—2T=(T=2)) foryards.

Note that this n. can be different because the riskless rate may change
in tome (but we have to know it at t = x and because (T —t) changes.
So during the life of the future between [0,T] we have dynamically
constructed a hedge with forwards.

There is a remark on the A of these hedges on slide 39. We already
found that the A of a forward is 1. We need n = ™t futures to
hedge a future, therefore the A of a future is n = " Tt which
becomes 1 att — T.

2.6 Some special cases

2.6.1 Forwards and futures on currencies.

A forward(or future) on a currency is a special case of forward (future), namely
1. one where the asset is itself a money-unit;

2. as the asset is also a currency, interest is earned on it, so it has a profit
being a percentage of its value (see section [2.3.2))

Assume that at T you want to buy USD, then, the thing that you want to
buy is whatis called the asset, so our asset is A = USD. We want to buy it
with EUR, so the money we pay with is EUR.

Then today the forward price, i.e. the price in the contract is fixed such that
the vaue of the future is zero today. Note however that in this case the asset
A =USD has a profit because we earn interest on it. So the ¢ is the profit on
the asset, and in this case the asset is USD so ¢ in section is the risk free
rate on the USD, rysp.

The r in section [2.3.2]is the discount factor, which is the interest rate on the
meny that you use for paying the asset, so in our case it is rgygr

Now we can just apply the rules we already know, only you should be very
cerfull and keep in mind which is the asset (a currency) and which is the mney
you pay with. In our example we pay with EUR and the asset is USD (A4 =
USD,).
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Property 8. So the forward price (i.e. the price in the contract) att for 0 <t <

T with continous compounding is F¢ = Sye(rt=1)(T—t) = GEUR/ A (rpur.i—qa,)(T—1)

and as the asset A is USD we find:

Ftc,(EUR/USD) _ SgEUR/USD)6(TEUR,t*T’USD,t)(T*t)

Applying this to ¢ = 0 we can find the value of the cotract.

Property 9. If we now compute the value of the contract with an asset that
yields a percentage profit then, as before, we have (note that discounting is always
with the money you use to pay:

ftc,(EUR/USD) _ (th(EUR/USD) B Fg,(EUR/USD))efrt)E[/rR(Tft)

You can learn thse formula by heart, but if you remember the ”trick” with
the money that is the asset and the money used for paying then it is just an
application of what you already know.

2.6.2 Futures on a stock index

Definition 12. A stock index is a hypothetical portfolio of stocks, i.e. a portfolio
with (hypothetical) quantities of shares of several stocks. E.g. in the Bel 20 you
have shares of 20 large Belgian companies.

E.g. afictituous index could be (50 shares of Electrabel, 70 shares of Imbev).
The value of the index at a point in time ¢ is then 50Sgge,: + 70Srmben t-
Obvioulsy, because the prices of the shares of EBel and Imbev change through
time, the value of the index will henage in time.

Property 10. As the index can be associated to the wvalue of a hypothetical
portfolio, it is just a special kind of asset. In other words it can be used as an
unerlying in a future (or option). Note however that the shares in the index pay
dividends, for an index (this is not the case for every share) the divident yield
is a percentage of the value, so the formulas from section[2.5.9 are applicable.

2.6.3 CAPM and hedging portfolios using stock indices.

We have seen that the value of an index evolves in time, according to its com-
position and to the prices of the shares in the index.

Of course you can yourself have a portfolio of equity that ”looks very much”
like the index, i.e. the price of your own portfolio andthe price of the index
move more or less equally.

It is evident that you might loose money in the future if the value of your
portfolio decrases a lot. So how can you hedge against this risk ?

You have your portfolio that is worth Poy EUR today, of course you do not
know the value of it a T,T > 0 (because you can not foresee the future).

If you wnat to be "sure” abot a price in the future then you can short futures
as follows:
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e Assume that the price in the futures contract today is Fy, and that each
contract is about () units of the index. Then one future contract is worth
VF,O = Q X Fo.

POO
VF,0

then you have no more uncertainty about the value of your port’folio at T.

e If you short (i.e. an obligation to sell in the future) N = futures,

In the example we assumed that the prices of our portfolio and the value
of the index evolved in a similar way. Obviously this does not hold for every
portflio, however the Capital Asset Pricing Model brings the solution. CAPM
allows to estimate the sensitity of your own portfolio compared to the index
using the so-called [ of your portfolio with respect to the index.

If the B8 of your portfolio is e.g. 2 then you have to short twice as much
futures to hedge your risk. In general you will need N = 3 5;";

If your portflio closly resembles the index then 3 = 1 and you find the result
supra.

2.6.4 Futures on interest rates.

Definition 13. An interest rate future is a future contract where the underlying
asset is an asset that pays interests, e.g. a bond.

They can be used to hedge aginst interest rate changes at time periods in the
future.

Assume you own a zero coupon bond with an continuously compounded
interest rate r = 5% that matures in 5 year and a principal of 100. Then after
5 year you will receive 100995%5 = 128.4025417. The contract was signed at
30/11/2015. You will then receive in 5 year 128.4025417.

Assume that after one year, i.e. on 30/11/2016, the interest rates change to
4%. Then,

e with the original interest rate of 5% your bond is worth 128.4025417
on 30/11/2021, so discounting it to 30/11/2016 at 5% this would be
105.1271096

e However, the interest rate has changed, so you will receive 128.4025417 on
30/11/2021, discounted at 4% is 109.4174284.

Property 11. So it follows that, if the interest rates decrease then the value
of an existing bond increases, if the rates increase then the value of the bond
decreases.

Obuviously, when this bond is used as an underlying asset in a future or a
forward, then the future price (in the contract) will also change.

Therefore a future on a bond, which is according to the definition supra an
interest rate future, can be used to hedge against changes in interest rates.

The price of a forward was determined buy (a) buying the asset with bor-
rowed money and (b) shorting a fowrad on the asset at the same time. For
interest futures there are some particularities.
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The first particularity with a bond is that you receive periodic interest pay-
ments, e.g. every six months. Assume you have a bond with semi-annual interest
payments, a face value of 100 and an interest rate of 11% assume it matures at
July 10 2028 and that we are at March 5, 2013.

| | | |

I I I

Jan 10,2013]
Jul 10,2013
Jan 10,2014
Jul 10,2028

March 5,2028

As can be seen, we are 'today’ (5/3/2013) somewhere between two dates
of interest payments. So if you would sell this bond, then you would want to
receive (1) the value of the bond at the last coupon date (10/01/2013) plus (b)
the accrued interest between today (5/3/2013) and that most recent coupon
date (because that interest was earned while you owned the bond). The clean
price or quoted price is the value at the most recent coupon date, the dirty price
or cash price is the clean price increased with the accrued interest. Note that
for the computation of the accrued interest the daycount convention must be
taken into account.

The second particularity is that, as usual with a future, the bond in the
future contract is highly standardised, i.e. with a fixed face value, a fixed
interest (inclduing compounding) and a fixed maturity. Therefore, the bond
specified in the contract does not always exist in the market, so the underlying
is "artificial” or ”synthetic”.

Ezxample 2.1. Assume a synthetic bond that matures in 5 years, has a nominal
value of 100 and a (annualy compounded) interest rate of 6%, interests are paid
annually.

If todays interest rate is 10%, then the value of this bond today is Zle 100x0.06

afo.1yr T
100(140.06)
o = 88.56.

The example shows that computing the value of a synthetic bond poses no
problems. However, if we want to find the price in the contract, then we (1)
borrowed money and bought the asset and (b) shorted a future. The second
point (b) is not a probem, but (a) is a problem because one can not buy a
synthetic bond (it is artificial).

Therefore, at the creation of a future contract it has associated with it a
basket of deliverable bonds that exist in the market, and each of these deliverable
bonds has a conversion factor that makes its value equal to the value of the
7artificial” bond. The conversion factors are computed based on the clean price
of the bonds. The conversion factor is such that the price of the deliverable
bond is equal to the price of the synthetic bond (=100 when the contract is
created) times the value of the deliverable bond of 100 x CFy = P4~ for each
deliverable bond d in the basket , where ¢ = 0 is the time the future on the
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bond is created. [l

At the settlement time of the future (e.g. at T') the price in the contract
is the value of the synthetic bond at T, let’s call it SY7, it is the price of an
artificial, non-existing bond. The one with the short position will, at 7" have to
sell the underying at SYr (per unit, i.e. per 100 nominal), note that SY; = 100
and SYp can be computed from the contract and the interest rates at 7'

So the one with the short position can buy any deliverable in the basket, and
sell it at C'Fyx SYr, of course he has to buy the bond on the spot at Py ;—7 for all
deliverables in the basket. In other words, his profit at T"is CFy x SYpr — Py i—1
and this for all deliverable d in the basket of underlying bonds. He will try to
maximise his profit so he will choose the underlying deliverable bond that costs
less, or he chooses the cheapest-to-deliver bond.

To be more precise, the price of the underlying will be the the most recent
settlement price of the future contract times the conversion factor plus the
accrued interest.

Note that all this is because of the mismatch between the underlying and
the asset to deliver, we wiil see that this will be termed as ”basis risk”.

So, if we know the cheapest to deliver and the delivery date, then we will at
t = 0 buy the cheapest to deliver at Sy, we will receive an income I that is the
present value on the coupons of the cheapest to deliver and therefore the price
in the contract should be Fy = (So — I)e"™.

The difficulty with this formula is that at ¢ = 0 the cheapest to deliver is
not known, therefore I must be estimated.

2.6.5 Duration based hedging using interest rate futures.

We have seen the definition of duration in section The duration was the
average time you have to wait until you receive cash payments.

Let Vg be the contract price in the futures contract at maturity and Dp the
duration of the futures contract, then (see section dVp = =Vp - Dp - dy.

Let P be the value of the bond portfolio (at maturity) and Dp the duration
of it, then (see section dP =—P-Dp-dy.

So when the interest rate changes by dy, then the contract price changes
by dVp and the prodtflio value by dP, so to hedge this change we have to use
N future contracts such that N future, N choosen such that NdVr = dP.
Subsituting the above results for dVp,dP we find that —N - Vi - Dp - dy =
P-Dp-dyor N = F5e

Note that we want to know it to define the hedge at a certain date, while
the values Vg, P are at maturity. Vr will obviously depend on the value that
is choosen as ”cheapest-to-deliver” which is known at maturity but not at the
moment that the hedge is put in place.

6Note that the conversion factor is bigger than 1 if the coupon of the deliverable bond is
higher than the coupon of the synthetic bond.
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2.7 Basis (risk)
2.7.1 Definition of basis.

A forward can be used to hedge the uncertainty of the price of an asset at some
date in the future. If you own the asset and you short a forward with exactly
the same underlying asset, then the risk was hedged away.

In many cases the asset that one owns is noet exactly the same as the one
in the foward contract. Let S;. be spot price of the asset in the contract and
Se¢,o the spot price of the asset that you own.

At maturity the forward price will be Fr. = Sy, and for 0 < t < T
Fi. = So’ce"(T_t). If the asset that we own is not exactly the one in the
contract, then at 7' the value St , me differ from Sr . and the owning of the
asset is not perfectly hedged by the short position in the forwad.

Definition 14. The basis is the difference between the spot price and the forward
price at t, i.e. by = Sy — F}.

Note that of the asset owned and the one in the contract are identical, then
Fr = St and the bsis at T is zero. If both are not identical then by can be
different from zero.

Fort <T the basis by can also be different from zero.

2.7.2 Decomposition of the basis.

As an example let us assume that we own an asset A, at ¢t; and to hedge the
price risk at to we short a future at ¢; with an underlying asset A, and a maturity
to.

At ty we sell the asset and receive Sy, , and from the future we have (short
position) X — Fy, . = Fy, . — Fi, ¢ or in total Sy, o + Fi, o — Fi, .. By defintion
of the basis is the difference between the spot price of the asset you own (S, o)
minus the future price at the same time (F;, ). So in total we have at o
Fy o+ by,

=0
—
Note that b2 = Stz,o - th,c = St2,o _Stg,c + Stg,c _FtQ,c~
In this way we can decompose the basis in two sources of deviation:

b2 = Stz,o - Stg,c + Stg,c - th,c

difference due to  difference if assets
asset mismatch would be identical

Note that the second term is zero when t, = T..

Definition 15. Hedging using non-identical assets is called cross-hedging.
Obuviously the price of bith asset should have a high correlation.

An example of cross-hedging is for an airline company; if they want to hedge
the risk of their jet fuel price, they should ideally use futures on jet fuel. How-
ever, futures on Jet fuel are not traded, theirfore they use futures on heating
oil.
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2.7.3 Hedging the basis; determining the minimum variance hedge
ratio.

If the assets that you hedge and the ratio in the forward are identical, then
we have seen that A is 1 or that we can eliminate risk by combining a short
position in a forward with a same amount of stock. So the ratio of the number
of forwards to the number of stock is 1. If the assets are not identical then a
hedge ratio of 1 is not always optimal.

Let us assume the the optimal hedge ratio is h. Then we have h units stock
for every unit in the forward, and the value of the portfolio is S; — hF;. The
hedge ratio will be choosen such that it minimises the variance. The variance
of Sy — hFy if|V = 0% + h?0% — 2hposor.

The minimum is found as % =0 or 2ho§ — 2pogop = 0 or the optimal
value for h, h* is

gs
or

This is the minimum variance hedge ratio.

If we substitute this in the above formula for V' then we find that the minimal
variance is

h=p

gs

* gs
V* =05+ (p—)%0F = 2(p—>)posor = 05(1 = p°)
or of

The share of the variance that remains is Z—: and the hedge effectiveness
S

ratio or the risk reduction ratio is a measure of the variance that was hedged
away. It is defined as

=1—+/1—p?
o2 p

1—

2.7.4 Optimal number of contracts.

In the section before we assumed that the amount of asset in the contract was
1 and that we had to hedge one unit of stock. If the number of units of asset
in the contract is (. and the number of units of stock to hedge is ), then the
number of contracts to hedge the @, units will be

Q,
Qe

because each future contract covers Q. units and we have @, units, so we
need % contracts to hedge with identical assets. If there are differences then
you need to correct with h* as explained before.

N* =h*

2.7.5 Hedging a floating rate loan
To do

7.2 — 2 2
Oty =0z + oy + 2pozoy
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3 Swaps

3.1 Definition of a swap

Definition 16. A swap is an over-the-counter (OTC) agreement between two
parties to exchange cash flows at specified times in the future, according to spec-
ified rules.

The elements in a swap contract are:

e The cash flows; the values of the cash flows are not themselves in the
contract, they have to be derived from the rules (e.g. in an interest rate
swaps the cash flows will be computed from interest rates defined in the
contract);

e the dates at which the cash flows occur;
o The rules for computing cash flows and for discounting.

Depending on on the rules that define the value of the cash flows one can
distinguish between:

e Interest rate swaps; the cash flows result from interest payments;

o Currency swaps; the cash flows result from exchange rates and or in-
terests on different currencies,

Remark 3.1. A forward contract is a special case because it is an exchange of
cash flows.

3.2 Types of swaps.
3.2.1 Interest rate swaps (IRS)

Definition 17. In an interest rate swap, the cash flows result from interest
payments where one part is a flow from a fized rate and the other one (in the
opposite direction) from a floating rate.

Market makers quote the fized rate.

The bid rate is the fized rate the market maker pays in exchange for a
receiving floating rate;

The offer rate is the fized rate the market maker receives in exchange for
paying a floating rate;

The swap rate is the average of the bid and the offer rate.

3.2.2 Currency swaps

see later
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3.3 Valuation of a IRS swap using discounted cash flows

3.3.1 Net present value of the cash flows.

Property 12. The valuation of a swap should not be too difficult because it is
just an exchange of cash flows at different dates in the furture. Therefore the
value of the swap can be computed when

1. The cash flows are known; these have to de derived from the rules in
the contract;

2. The dates at which the cash flows occur are known; these are in
the contract;

3. The discounting frequency and discounting rate are known.

Let’s analyse a swap that pays a fixed rate between [0, 7] in exchange for a
floating rate between [0,T] at dates tg = 0,t1,t9,...,t, =T
Moreover, the discount factors (for compounding frequency m) are DEF™(0,t;).

e after one period, so at t; we have the following flows:
— we pay an amount fiz; = Q X So.r X (t1 —tp), note that the interests

are paid after each period, so we do do not coumpound here !;

— we receive an amount float; = Q x Fy, 4, X (t1 — o)
e after two periods, so at t; we have the following flows:
— we pay an amount fize = Q X So 1 X (t2 —t1), note that the interests

are paid after each period, so we do do not coumpound here !;

— we receive an amount floaty = Q x Fy, ¢, X (t2 —t1)
e ...
e after n periods, so at t, =T we have the following flows:

— we pay an amount fir, = @ X Sor X (t, — t,—1), note that the
interests are paid after each period, so we do do not coumpound here
1.

— we receive an amount float,, = Q X Fy, | 4. X (tn —tn_1)
All these flows occur at different points in time, therefore, if we want to

know the value today, we have to discount them and then add them and the
value for the ”pay fix receive float” IRS is:

n

Vosiost = _(Fi_yt, — Sor) x DF™(0,t;) x Q x At (13)

i=1
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The value of a”pay float receive fix” IRS is:

n

Vosirgi = Y _(Somr = Fi,_y1,) X DF™(0,;) x Q x At (14)

i=1

3.3.2 Determining the initial swap rate.

Property 13. Initially, because of arbitrage arguments, the value of the swap
is (as was the case for forwards, forward rate agreements, ...) is equal to zero.

Obviously this only holds for the initial value only, at any time after that the
IRS will have a value different from zero.

From the above equations we can find that Sp7 can be computed from
0= Q x At X (Z?:l(Fti—hti — S07T) X DFm(O,tl)) or Z:’L:I(Fti—hti — S()’T) X
DF™(0,t;) = 0. This implies that Y. | F}, , ¢ X DF™(0,¢) = > Sor ¥
DF™(0,t;)

We find that:

Z?:l Fti—lvti X DFm(Ov ti)
2?21 DF™(0,t;)
Except for ¢ = 0, the F}, | ¢+, are unknown at ¢ = 0, so we have to "replace”

them by the forward rates f;, ,;, the we can derive from the discount factors
and those can be computed at ¢t = 0:

iy Sl e X DE™(0,t)
S DF™(0,t)

So,r =

So'r = (15)
Property 14. The swap rate for a maturity T', i.e. the fized rate So r is com-
puted under the assumption that the forward rates are realised. These forward
rates can be derived from the discount factors (with a certain compounding fre-

quency).
These swap rates depend on the compounding frequency m.

Remark 3.2. Note that there is a swap rate for every maturity T and for any
compounding frequency.

Remark 3.3. Note that the fized (and the flowting) swap rates are paid every
month, so interest payments using So,r are not compounded and can NOT be
used to compute discount factors !l. This is what distinguishes them from the
spot rates Ry 7.

Remark 3.4. The formula[I5 writes the swap rates as a function of the discount
factors and the forward rates.

The formula can also be used to derive discount factors from swap rates, but
only if we know the swap rates for all the maturities !!
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3.3.3 Valuation of an IRS as a difference of two bonds.

Note that, by slightly changing the reasoning in section we can also derive
the initial value of an IRS in another way. Indeed, let us look wat happens when
we pay, on top of interest flows, also the notional amount @ at the end. Then
the result is the same, except that in ¢, = T there are two additional flows:

e We pay the amount ) with the fixed rate in T
e We receive the amount ) with the floating rate in T

But, after that (see supra) we take the difference and as these two amounts
are identical we will of course find the same value, so the value is also equal to:

Vofinft = Z(Fti_hti—So,T)xDFm(O,ti)xQxAtJrQ x DF(0,T) —Q x DF(0,T)

i=1
But then we can see that this is a difference of two terms:
e QxDF(0,T)+ > | Fy 14, x DF™(0,4;) x Q x At

e QxDF(0,T)+ 2?21 So,r x DF™(0,t;) x Q x At

But if you analyse this then the first term is just the sum of discounted
interest payments and the dicounted principal amount on a bond with floating
interest rate, while the second one is the same for a fixed rate. Note that in
both cases the interests are paid monthly and NOT compounded !

Property 15. So we find that the value of an IRS that pays a fized rate in
exchange for a floating rate can also be written in terms of bond prices (with
periodic payments of interests, so not compounded):

Vpfirfl = Bfteat _ BFiz interests paid every period (16)
And the swap rate is the value of the fized rate for which Bf*® = Bfloat

Let us look at the floating bond in more detail; at t; you receive an interest
per euro that is equal to (taking the compounding frequency into account) (1 +

ftizit )mAt_l (

po= minus one because you only get the interest !). Using the schema

in figure |1f we know that (1 + L’TZ*I ymti-i=0)(1 4 L;ﬂ““ yrltici=t) = (1 4
Ro,i; )m(tifO)
m

of in terms of discount factors DF(Ol,t_l) (1+ ft,-;nl,t,- ymlti-i=ti) —
1 <
DF(0,¢;) 5©
Lo fun )T DE(O. 1)
m l)F‘(O7 ti)
To get the interest on one euro we have to subtract 1 so at t; we get an

interest of % — 1 euro at t;, so if we want to have the value of this at

t = 0 we have to discount so to multiply by DF(0,t;).
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So the discounted value of the amount interest received on 1 EUR of the
bond is

DF(0,t;_1)
( DF(0,t;)

So the present value of the floating bond that pays interests every period is

- 1) DF(0,t;) = DF(0,t;_1) — DF(0,t;) (17)

periodl period2
DF(0,0) + —DF(0,2) +
periodT principal
———
-+ DF(0,T — 1) — DF(0,T) + DF(0,T)
= DF(0,0) = 1

Property 16. The swap rate can also be determined as the value that makes
the value of a boond paying fixed periodic interest equal to its principal amount,
of as a solution of BT = Q.

3.3.4 Computing discount factors from swap rates & vice versa.

Assume that we know the swap rates Sg" for different maturities ¢. The goal is
to derive the discount factors from Sy ;. Note that the swap rates Sy can not
be used directly to find the discount factors because there is no compounding
in S()"T il

How can we proceed ?

Let us take a swap with maturity ¢ and a given swap rate Sg%. At time
t = 0 the swap has a value of zero and this is how we found Sg%. By the
above property, we know that Sg", is the value the makes the periodic interest
payments plus the principal, all discounted, equal to the face value of a fixed
bind, so:

o t=1t;: FF=F x5, X (t1 —0) x DF™(0,t1) + F x DF™(0,t4)
so we find that

m _ 1
DF (Outl) - 1_‘_5(7)1’;1 (t1—0)
m o 1-DF™(0,t1)
5m(0,81) = 1+DF7"(0,t1)(t11—0)

ot =ty F=FxS, x({t—0)x DF™0,t1) + F x Sg7, x (ta — t1) X
DE™(0,t;) + F x DF™(0, t5)

so we find that

1—=8I X (t1—0)x DE™(0,t,)
m — 0,t3
DF (0,t2) - 1+S(Tt2 (t27t1)

_ 1—DF(0,t3)
5(0,t2) = DF(O,tl)x(t1—0)+DF%0,t2)><(t2—t1)
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3.4 Very important overview on interest rate swaps.
3.4.1 Overview on important concepts.

First of all it is noted that a swap is a series of cash flows. An interest rate swap
is a special case (but an important one !).

Very special in an interest rate swap is that the interests are paid out period-
ically, so when we talk about an interest rate swap we have no compounding
! The difference between an interest rate swap and z zero coupon bond is illus-
trated in figure |2 the zero coupon bond is in the upper panel, the interest rate
swap in the middle panel.

Only the I'f’, can be used to compute discount factors !

The value of the swap can be computed as the sum of the discounted dis-
counted cash flows or as a difference of the values of two bonds.

To find these values you need cash flows Al |, which is the difference
between an interest (in EUR) of a fixed rate and an interest (in EUR) of a
floating rate and the discount factors to discount these values to today ¢ = 0.
So the value of the swap that pays a fixed rate and receives a floating rate is

V=S 1™ )< DF™0,t)

ti—1,t, ti—1,¢;

The fixed rate is known in the contract, just as the face value, so we can
compute 7. To compute the I/°% we have to know the floating rates for
t > 0, as this is in the future we do not know them.

‘ We will use the forward rates f;, 4, to compute the /0%,

The value of the swap can also be derived as the difference of the values of a
bond that pays a floating rate mines one that pays a fixed rate interest. These

Such bonds are not a zero coupon bond, as illustrated in figure

So V can also be computed as V = Vfloat _ yfiz,

For computing the forward rates and the for discounting the interest cash
flows we will need the discount factors.

‘ You can NOT use swap rates directly to compute discount factors.

The swap rate is the fixed rate that makes the intial value of the swap equal
to zero. From the above it follows that, to find the swap rate, you need the
value of the bond or of the discounted cash flows of the swap. Conequently,

indirectly on the discounting frequency in two ways;

1. via the discount factors and

2. via the computation of the interest between [t;_1,;]

SOLUTION OF EXERCISE Q3.2 !

The swap rate is the value of the fixed rate such that V' = 0. It depends

ASK THE PROFESSOR WHETHER THE SECOND *VIA’” MAKES SENSE,
BECAUSE IT HAS AN IMPACT ON THE COMPLEXITY AND ON THE
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Figure 2: Difference between a zero coupon bond, a swap and a fix rate bond.

Zero coupon, only at T
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3.4.2 Discount factors and spot price for compounded interest.

™ (to,t) = (1 n %)m(t—to) -
m

[(to,t) = R, (t=to) )

D*(to,t) = ((14 Ri . (t —to)) (20)

for tog = 0 these are (compounded) interest rates, for £y > 0 these are (com-
pounded) forward rates.

Property 17. To switch between disocunt rates and interest rates use:

DF*(to,t) = — R, «— DF*(to,1) (21)

I'*(to, 1)

Property 18. The value of the interest (in EUR) between two periods ty,ts for
a face value F is equal to:

1317752 = F;,h xF—-F= (F;,k17t2 B 1) X F (22)
Note that this depends on the compounding frequency !
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3.4.3 Forward rates and discount factors.

1 1 _ 1
DF*(0,t) DF*(t,T) _ DF=(0,T)

Using the schema in figure |1/ we can see that

Property 19. Forward rates can be computed using :

1 1 1
DF*(0,t) DF*(t,T)  DF*(0,T)

= fir (23)

3.4.4 Swap rates and discount factors.

You can NOT use swap rates for discounting, however, if the swap rates for
different maturities are known, then one can compute discount rates from swap
rates and vice versa.

Assume that today (t = 0) we know the swap rates for multiple maturities,
i.e. we know Sj, for several ¢;. The ™’ superscript indicates the indirect
dependence of the swap rates on the compounding frequency.

Let there cash flows of the swap appear at t; <ts <tz <---<T.

e We know S, and we know also that the swap rate is the value of the
fixed rate that makes the present value of the interest payments of a fixed
rate bond (with periodic payments, as in figure [2]) equal to the face value.

So we know that F' = F x (I',, — 1) x DF*(0,t1) + F' x DF*(0,t;) or
1= (T%,, —1) x DF*(0,t1) + DF*(0,t,) or

1
DF(0,t1)" = =
0,t1

So in case of

— continuous compounding we have I'f, = 50 (1=0) (because the
interests between [0,¢1] are computed with Sy, and then paid !) so
we find: DF(0,t1) = e 502 (1170

— discrete compounding we have: DF™(0,¢1) = (1+ Sgy, /m)~™(t1=0)

— simple compounding we have DF*(0,¢1) = (1+ 55, % (t1 —0))~!

These formulas can be used to find the discount factor DF*(0,t;) when S5, is
known and vice versa.

e If we also, besides Sj ;, , know 53, we reason in a similar way:

discounted from t1 to 0 discounted from t2 to 0
interest after t1 interest after t1 disc. face value from t2 to 0
—_— —_— —_——
F=Fx (Fatz — 1) XDF*(O,tl) + F X (Fatz — 1) XDF*(O,LLQ) + F x DF*(O,tQ)

or

1= (T4, — 1) x DF*(0,t) + (T, — 1) x DF*(0,t5) + DF*(0,15) =
(T34, — 1) x DF*(0,11) + T, x DF*(0,t5) or
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1— (T3, — 1) x DF*(0,t,)

DF(0,12)" = =
0,ta

These formulas can be used to find the discount factor DF™(0,t;) when S§
and Sg,, is known, because DF*(0,t;) is known from the previous step and
vice versa, we can compute Sy ; when the discount factors are known.

DO NOT LEARN THESE FORMULAS BY HEART, JUST REMEMBER THE
LOGIC, THE EXERCISS WILL SHOW THAT IT IS EASY !

o At t = ty, simplifying to ”simple compounding”:

discounted interest t1

F = FxS85, x(t1—0)xDF*0,t) (24)
discounted interest t2
+ Fx S5, x(ta—t1) x DF*(0,t2) (25)
discounted interest tk
+ L Fx S5y X (ty —tg—1) x DF*(0, 1) (26)
discounted principal tk
—N—
+  FxDF(0,ty) (27)

but the formula taking into account all kinds of compounding is obtained
when S ; is replaced by I'g , — 1.

This procedure were we compute the values one after the other is called boot-
strapping.
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3.4.5 NEW: Schematic overview.

swap rate

section [3.4.4]

Discount factor

section [3.4.3]

section [3.4.2

Zero coupon rate forward rate

3.5 Currency swaps (foreign exchange swaps)
3.5.1 What is a currency swap ?

Currency swaps are very similar to interest rate swaps but there are fundamental
differences.

An interest rate swap has (simplified) a principal amount in one currency
and (if it is a fix-for-float interest swap) a fixed rate and a floating rate. The
differences in cash-flows are exchanged periodically, the principal amount is not
exchanged, not at the beginning nor at the end.

A currency swap has the initial prinicipal expressed in two currencies (e.g.
once in dollar and once in euro) and for each of the two currencies an interest rate
is fixed. Therefore one can periodically compute the interest on each currency,
so we get a series of cash flows for each currency or ”for each leg of the swap”.
What is different from an IRS is that the principal amounts are exchanged !
just as well at the beginning as at maturity.

Assume that two parties agree in a currency rate swap: party 1 will receive USD
(which implies that at the start it has to buy USD from party 2) and pay EUR
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and party 2 will receive EUR (and therefore at the beginning it will buy EUR
from party 1) and pay USD.

If you buy another currency then you need an exchange rate, at ¢t = 0 let
USD/EUR

Ef URIUSD 1,6 the number of euros for one USD, and Ej the number
of USD per EUR. Then it holds thatf| EZVR/VSP — —sirzor. E stands for

0
exchnage rate, as a superscipt we indicate in which direction we exchange.
We also need the quantities, let’s assume it is about QFUT euros (e.g.

QFYE=1 million eur), then obviously, as the principal amounts are exchanged

initially the amount in USD will be QY7 = QFVE XEgSD/EUR where EgSD/EUR

is the exchange rate of the USD per EUR. To be more precise, we will use the
exchange rate that is known at the time the swap is initiated, i.e. Eé] SD/EUR

So now we have a swap contract with:

e An amount expressed in two currencies: QYU and QY SD where QY SD —
USD/EUR
QFU™ % B VPR,

These two amounts have (at ¢ = 0) the same value, else one of the two
parties would not be willing to conclude the deal !

It is important to note that these amounts are in the contract, so their
conversion in another currency is based on the exchange rate at ¢t = 0

e an interest rate on each of the two currencies, let’s assume it is a fix-for-fix
currency swap (but it is easy to generalise to other types). Then we have
an interest rate for each currency so rysp and rgyg. note that these are
not necessarily the risk free rates, so we will later on have a discount rate
as well.

e A periodicity for exchanging the cash flows, assume that after each At the
flows are swapped (=exchanged).

e the interests are exchanged at T,

e the principals are exchanged at T,

It is important to note that these cash flows are computed on the amounts
that are in the contract so we use Q57 , QFVE.

3.5.2 Cash flows in a currency swap.

Let us schematise this in the table below (the explanation is after the table)
The first column represents the times at which cash flows occur, below party
1 we have both legs of the cash flows for party 1 and similar for party 2. The
left leg is the USD leg, the right one the EUR-leg (and vice versa for party 2).
Note that the first line, ¢ = 0 is there only ”as information”. For each party
the value of the exchanged principals is zero by the way we constructed it using
the interest rate !

8If 1 USD costs 2 EUR then 1 EUR will cost 1/2 USD.
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time party Py party Ps
— USD : EUR EUR : USD
'ét******erB ***** L**ETU%O********EURQ****L**Z;_S%Q *****
- 5
t=At | +Q¢”" Xrysp ' —Qp XTgur | +Qf Xrpur ' —Qy°" X TUsp
_ USD ! EUR EUR | USD
t=2At | +Qp°" Xrusp | —Qu" " Xreur | +Q¢7 " Xreur | —Qg°" X rusp
: |
: : ‘ :
_ USD EUR EUR ! USD
t=T +Qu°" Xrysp 1+ —Qy" " Xrgur | +Qy" " X rgur 1+ —Qp " X rusp
_QUsD | BUR _QEUR | ysD

1. At t = 0 party 1 buys QY°? in exchange for QFUT euro from party 2
and vice versa. Obviously the two parties will not agree if these amounts,
after conversion to a common currency, would be different.

EUR _ AHUSD pn EUR/USD
So Qy” " = Q"7 Ey ;

USD/EUR __ 1 USD _ NEURpUSD/EUR
or, becauseE), = LEUR/USD Qg =Qy"E,
0

Note that at ¢ = 0 the exchange rate is known, but all the later exchange
rates are not known at t =0 !

We have to be very explicit because the exchange rates change over time;
the amounts in the contract are fixed at t = 0 using the exchange rates
valid at ¢ = 0, therefore we explicitly mention the subscript '0’.

Note: for both parties the sum is zero at t =0 !

2. At t = At we have the first cash flow:

e party 1 receives interest on the USD that it has received at the start,
i.e. it receives —|—QOUSD X rUsSD-

e On the other hand, party 1 will have to pay interest on the euros, so
—QFYE x rpyr.

USD EUR
0 Qo

So party 1 receive a cash flow @ X rysp — X rgyr. As these
amounts are in different currencies we can not make the substraction !.
Therefore we keep the amounts for each leg separate !

For party 2 the opposite will happen.

3. At t = 2- At we have the second cash flow, in a completely similar way
we find the values in each leg.

5. At t = T we have a cash flow with two components:

e The cash flow resulting from the last interest payment at t = T"

e The exchange of the principal amounts QY SD and QFYE; these are
exchanged in the opposite direction as at t = 0.
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Very important:

At e.g. t = At we have two cash flows, one for each leg: So party 1 receives
a cash flow QY%P x rysp — QFVE x rpyr. As these amounts are in different
currencies we can not make the substraction !.

In order to convert to a common currency we need the exchange rate, how-
ever, at t = 0 we can impossibly know the exchange rate at t = At because that
is in the future and therefore unknown !

Therefore we convert all the cash flows using the exchange rate at ¢ =0 !!!

Note that all cash flows must be discounted to ¢ = 0, so we need some
estimate of the exchange rates at At,2At,... to compute this at ¢ = 0.

Read the example of Hull, section 7.9 if you want an example with concrete
numbers !

3.5.3 Valuation of currency swaps.

Note that currency swaps look alike interest rate swaps in the sense that you
have two interest rates, the only additional complication is the exchange rate
between the two currencies.

Just as for an index rate swap the value of a currency swap can be computed
in two ways. One way is to compute the cash flows and discount them, another
way is as the difference of two bond values. In stead of EUR and USD we will
talk about a domestic currency (D, e.g. D is EUR) and a foreign currency (F,
e.g. Fis USD).

Let us look at the example in the table:

e We already mentioned that the sum of the two flows is zzero at ¢t = 0

e at t = At: we assume that party 1 is in the uero zone (or the EUR is
its domestic currency). So both legs for party 1 will be conversted to its
domestic currency (EUR in our example).

— +QgSD X rysp this must be converted to EUR using an exchange
rate at t = At. But at t = 0 we can not know that exchange rate, so
EUR/USD
we use :
So for the dollar leg we have at t = At:

+QUSP x ryspx EXYUSP (amount in EUR)

— For the euro leg no conversion is needed, it is already in euro:

So for the euro leg we have at t = At:

EUR
- Qg X TEUR

These amounts should be discounted at a rate r, we assume contin-
uous discounting:
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Note that r is the risk free rate in the oney you are working
in, we assumed party 1 is working in euro, so r is the risk
free rate on euro, which can be different from rgy g that is
in the swap contract.

So be very carefull and pay attention to which currency you
are working in !

For the dollar leg we have at t = At:

D EURJ/USD\ —rA
(+QY P x rysp x E, / Je At

For the euro leg we have at t = At:

EUR At
_ QO r

X TRURE
e at t =2 At we find similarly:
For the dollar leg we have at t = At:

D EURJUSD\ —r.9.A
(—I—Q(I)js X?"USDXEO / )6 T2t

For the euro leg we have at t = At:

EUR —r-2-At
— o X TEURE

e at t =T we have

— for the interests:
For the dollar leg:

EUR/USD\ —
(+Q6JSD X rysp X B / )e rT

For the euro leg:

EUR —rT
— QO X TEURE

— for the principal amounts:

We note that QFUE and QY°P have the same value because they
were choosen like that in the contract, so we may replace both, and
then from the table it follows that

For the dollar leg:
EUR/USDy —r
(+QEP = By )T
For the euro leg:

_ Qg'URefrT
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Let us now add up all the discounted cash flows from the USD-leg, note that

the common factor Eé; UR/USD can be separated and put in front:

discounted interest discounted interest discounted interest discounted principal

EUR/USD USD —rAt USD —2rAt USD —rT USD _—rT
EO / (QO X ryspe +Q0 X ryspe” " —|—"'+Q0 X ryspe |+ QO e " )

exchange rate value of a abond

Property 20. So we find that, if Bysp is the (dollar) value of a USD bond
with a principal and an interest rate identical to the one in the swap contract,

then the value of dollar leg in EUR is equal to E(;EUR/USDBUSD

Similarly, if we add up all the discounted cash flows in the euro-leg then we
have

discounted interest discounted interest discounted interest discounted principal

EUR AL EUR —orAt EUR T EUR,—1T
—Qo " xrpure T 4+ =Qy " Xrpyre TS 4+ —=Qy " X rpyre” T+ —Qy e "

value of a abond

Property 21. So we find that, if Bgyr is the (euro) value of a EUR bond with
a principal and an interest rate identical to the one in the swap contract, then
the value of euro leg in EUR is equal to —Bpyr

Property 22. The value of the swap where dollars are received and euros are
paid (see the table, party 1 receives USD) value expressed in EUR is the combi-
nation of the two legs so

EUR EUR/USD
‘/swap = EO BUSD - BEUR

For party 2 we have the opposite value of course so: The value of the swap
where euros are received and dollars are paid then the value expressed in EUR
1s the combination of the two legs so

EUR EURJUSD
Vswap = Beur — Ey Bysp

Note: if at a leter time t you know the exchange rate then you use the most
recent, known value for E; of course.

This is the same result as in Hull on page 169 but everywhere Hull says
”dollar” you put "EUR” and what Hull calls ”foreign” is ”USD” in our example.

3.6 Other topics
3.6.1 Forward rate agreement (FRA).

We already defined a forward rate, f; 7 as the interest rate between ¢ and T,
where t is in the future. So the forward rate between ¢; and t5 both in the
future is f, +,-
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Definition 18. A forward rate agreement is a forward contract on a loan, i.e.
we agree today t = 0 to pay interest between t1 and to on an amount L and
the interest rate Rpra and the amount L are fived in the contract when it is
created, just as well as t1 and to.

In a forward contract you have two positions, a long (when you are the buyer)
and a short (you are the seller) one. For an FRA you have a long position if you
are the borrower in the loan underlying the forward contmctmg 1s usually the
buyer and borrower has the same first letter) in the underlying loan and short
if you are the lender in the loan underlying the forward contract.

Obviously, when the FRA is initiated at t = 0, the rate in the contract will
be choosen at Ryrq = ftoh,52 (the superscript 0 indicates that we compute the
forward rate at t = 0.

To make the name complete, a "(t1,t3) FRA” is a forward contract with an
underlying loan over the period [t1,ta] in the future. Note that the length of the
loan underlying an ”(t1,t2) FRA is to —t1 !, the interval of the loan is to — t1
and starts at 11

Note: for an FRA the rates are not continuous and the principal amounts
are not exchanged

(t1,t2)-FRA

L x Rfra X (tQ — tl)
paid at to !!

tl t2

! ‘ |

itiation settlement intrest payment
Vj'rrl,O =0

Vf’r‘aAt =7

Remark 3.5. If I am long in an (3m,9m)-FRA let’s say of 5%, then I have
the obligation to borrow three months from now, until nine months from now,
at 5%.

If in three months the interest rate is higher e.g. 7%, then, according to
the contract I can borrow at 5% , compared to 7% in the market, so someone
needing a loan in 3 months and expecting that the interest rates will go up, will
have a profit from signing such a long position in a (3m,9m) FRA.
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so0 it is like any other assets, if you are long, you want rates to increase (for
any other assets, if you are long, you want prices to increase)

It is important to note that the FRA is concluded at ¢ = 0 and that it is a
foward with underlying asset being a loan from ¢; to ts. It is settled at ¢;.

We want to find the value of the (t1,t2)-FRA for any value of ¢ between t = 0
and t = t; (see figure). We will compute it for the one with a long position,
i.e. the borrower in the underlying loan. For the short position you just put a
minus sign in front.

The contract is settled at ¢ = ¢; so let us assume that the market interest
rate is r1 at ¢1. Note that this rate is unknown at ¢t ! (see figure, at ¢ we do not
nothing about ¢; because it is in the future !)

According to the contract I can borrow (long position) at a rate Ry, , if
the market rate is higher, then I have a profit because I can borrow at R4
compared to a higher rate r; in the market, the percentage profit is 7y — r¢pq.
Note that this is positive so it is a profit if r; is higher, so the sign is fine for
the Ing position. Note that we do not compound interest in FRAs!

To find the interest that must be paid at t5 (!!) we have to multiply this by
the amount and by (t2 — t1) so the interest paid at t2 is L(r1 — Ryfpa)(t2 — t1).
This is the value of the FRA, for a long position, at ts, so to find it at r we have
to discount it.

Moreover, we do not know 71 at t because it is the market rate at t; and we
do not know it at . Therefore we replace it with our "best estimate” which is
the forward rate computed at ¢ for a loan between tq, to:

Property 23.

time of the loan in year

Long t —r(to—t
frait T L ,(ftl-,fa - RfTCL) (t2 _tl) \6 T( 2 ),
EUR discount to—t

a percentage

In the formula, DF(ty,t) = e ">~ is for continuous compounding, for
other compounding frequencies the formula is slightly different !

You do not have to learn this by heart. Just remember the steps that you
see in the formula:

1. Determine whether you have a long or a short position;

2. Determine whether you have a profit or loss; if you are long and interests
have risen then you have a profit, ... (long positions profit from price
increases, see the graphs under forwards: Sp — K)

3. compute the difference in interets, if you don’t know the market rate then
use the forward rate, no compounding is used !

4. compute the length of the loan

5. multiply by the amount
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6. discount from to — t.

Remark 3.6. Note that if we choose Rfpq equal to the forward rate at t = 0
then this formula shows that at the creation of the FRA it holds that Vfl;ffog =0.
Compare to a forward (future) where the price in the contract is choosen such
that at the creation of the contract the value of the contract is zero. This is not
a surprise, because an FRA is a special case of a forward contract.

Remark 3.7. FRAs are settled at t = t1. Let us see what the value is at
settlement; att = t1 we know the rate Ry, 1, (it is then no longer a forward rate
because we are at t1, it is however paid at ta). So at settlement the value of the
FRA is L(Ry, 1, — Rypra)(ta — t1)e "(t2711)

Property 24. If one looks at the formula for the value of an FRA we see that
it is a face value L times a difference in interest paid (ff ,, — Ryra) times a
discount factor. If you compare this two the two cash flow legs in an interest
rate swaps, and taking into account that we subtract these two flows, we find
that the value of an interest rate swap can also be computed as a series of FRAs
/

Said in another way: an FRA swaps (in one cash flow) a fized rate (Ryrq)
for a floating rate (the one that you used to compute forward rates, this is usually
LIBOR or EURIBOR.)

Note that, in the above example, we borrow L at t; and pay L(1+ Ryq(t2 —
t1)) at to. We want to find a replicating portfolio. In order to have L at ¢; I
have

e to sell (short) today a zero coupon bond with face value L and maturity
t1, its value today is L x DF(0,t1),

When I do this then have L at ¢, (and this L grows to Lx (14+Rfrq(ta—t1))
at tg)

e to buy (long) a zero coupon bond with face value L and maturity ¢; which
has value today equal to —L x DF(0,t2) (minus because I buy).

When I do this then I have at ¢ty the L x (1 + Rypq(t2 — t1)) (from the
short zero bond) and —L (from the long zer bond)

So at tg we have L (14+Rrq(t2—t1)) —L = Rypq(te —t1)L which is identical
to the cash flow of the FRA. As the cash flow is the same, the value of the FRA
today must also be equal and we find that it is L (DF'(0,t1) — DF(0,t2))

so we find that a (¢1,t2)-FRA can be hedged by a portfolio of the two above
zero coupon bonds !

Note that DF(0,t;) — DF(0,t;) = DF(0, ) (gggg»g; - 1). If we look at

the definition of the discount factor DF(0,t2) with continuous compounding
then we find e~"2 and if we look at how we computed forward rates in property
(With simple compounding) we find that g?gg’:;; — 1 times to — 1 is the other
a

ctor in the formula for Vy,q o supra.
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3.6.2 Overnight index swap (OIS)
3.7 NEW: Forward start swap.

See back of the slides of the professor and exam level question 9 !

As an example, you are a government and you know that you will need money
(liquidity) within 2 years and for a period of 10 years. As todays interest rates
are rather favorable and expected to be higher in the future, it is interesting to
get an agreement for the future that is based on todays interest rates.

In that case you need a swap that starts at a future date, i.e. a forward start
swap or a deferred swap.

Definition 19. A forward start (or deferred) interest rate swap is just an in-
terest rate swap that starts exchanging cash flows not today but at a future date.

It can be used when you need a loan in the future and todays interest rates
are more favorable. Of course there is a price to pay for this advantage.

The swap starts at ¢; and matures at 3, so let us call this swap rate Sy, +,.

t floating leg

Note that the flows start after £; and not at ¢; because interest is paid after
passing of At.

Obviously, this is a series of cash flows, but not a usual swap because we
miss cash flows between [0, ¢1] !

But we can apply a similar reasoning as for the usual swap to compute the
value or the swap rate. For the usual swap we had three methods to compute
the value:

1. Compute the present value at ¢ = 0 of all the cash flows in the fixed leg,
compute the present value at ¢ = 0 of the cash flows in the floating leg,
and subtract the two.

The swap rate at ¢ = 0 can be computed by equating this difference to
zero and to solve the equation for the fixed rate.

2. As the sum of the values of a series of FRAs. If you look at the formula
for the value of an FRA, then you can see that this sum is exactlt the
same of for the difference of the floating and the fixed legs, but terms are
re-ordered and regrouped.

The swap rate at t = 0 can be computed by equating this sum of FRA
values to zero and to solve the equation for the fixed rate.
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=

3. As the difference of the values of two bonds. This method will makes

computation of the swap rate much faster !

However, here we have to be ”tricky” because we do not have to bonds
at ¢ = 0 since the interest payments at the beginning are missing. BUT
there is a way out and it is tricky but it simplifies the computation !

If we would be at t = t; then we have two bonds, so let us do ”as if” we are
at t = t1. Then, at that moment we would compute the swap rate as the
fixed rate that makes difference of two bonds equal to zero:Bf;; — Bfioar =
0 and we knew that this means that the value of the floating bond was
the face value F' at ¢t;. But we can not be at ¢ = t; because that is in the
future.

So let us go back to ¢t = 0, then we add zero cash flows at the start of the
fix leg, and for the floating leg we just discount the face value to ¢ = 0.

fix leg
0 0

t floating leg

«DF(0.t1) ©

Therefore we have to solve F x DF(0,t,) = S22 \, F-St, 4,-At-DF(0,t)+
F- DF(O,tQ) =0 for Stl;tZ'

We find that F- Sy, 1,312 A, At-DF(0,t) = F x DF(0,t;) — F-DF(0, t5)
or
DF(0,t1) — DF(0,t5)

Sty ity =

To clearly show the difference with a usual swap we show below the figure
assuming that we are at ¢ !

‘ ’ ’ fix leg
[ |

t floating leg
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At t = t; you would solve F' = Z?:MF - Sty s - At - DF(ty,t) + F -
DF(t],tQ) = O fOI' Stl,tz

Remark 3.8. As for an FRA, for some time point t between t =0 and t = t;
all values have changed and this forward starting swap will have a value different
from zero. At initiation its swap rate is fized such that the value at initiation is
zero | Therafter it can have a non-zero value.

To compute that non-zero value you have to apply "method of the cash-flows”
or the "method of the series FRAs”

3.8 NEW: Excell sheets seen in the course.
3.8.1 Index rate swap on slide 31

Important notes:

Daycount convention: Note the daycount convention in cell J3. This has to
be taken into account wherever we use t or At. In this case it is 30/360
which means that one month is 1/12, so when we work in multiple of
month there is nothing special. This would be more complex if actual
where used in the numerator or denominator !

Computation of Zero Rate’: The term structure of the interest rates is
given as a Nelson-Siegel curve with parameters given in the excel, namely
a; = —0.01, a3 = —0.005, a3 = 0.5, 4 = 0.035. (these are al,a2,a3,a4 in
B4 : B7 and the values in D4 : D7).
As we have seen (see chapter 1) this means that the zero coupon rates can

be found as (a7 + ast)e™ 3t + ay, this is the formula you find in the cells
D13 : D33. The time ¢ is in the columns B13 : B33

Computation of 'DF’: From the zero rates yuo can compute the discount
factors (see overview on interest rate swaps) using DF(0,t) = e~"(t—to),
where r is the zero rate, ¢ is in column B and tg is the first ¢ that you
have so ty = 0. we have continuous compounding in discount rates, which
is usual. . This is the formula you find in F13 : E33.

Computation of the ’Fixed cash flow’: this is just the fixed rate (given in
H5) times the nominal amount (in H3) times ¢ = 0.5 . This is the formula
in G13:G33. he might ask something with above or below par value 7

Computation of the ’Floating rates’: These are (see supra when we com-
puted interest rate swaps) derived from the discount factors with the for-
mulas explained in ”"overview” supra. Note, we have FRA here so no
compounding is used !!! These are the formulas in H13:H33.

Computation of ”Floating cash flow”: similar to fixed cash flow but with
the floating rate. Formulas in 113:133.
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Computation of "FRA Value”: difference of the receive - pay, discounted.
Formulas in J13:J33

Computation of cell ’I9’: this is the sum of the discounted floating cash
flows, so floating casf flow times discount factor and then sum.

Computation of cell ’J9’: sum of FRA values (they are already discounted,
see supra)

Computation of cell ’Check’: this is the sum of the discounted fixed cash
flows, this should be equal to receive - pay (19-J9).

3.8.2 NEW: Cross Currency swap on slide 48.
TO DO
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4 Properties of options

see Hull and slides, study these slides, for completeness I have just commented
on some of the slides:

slide 4: Bermuda is an island between Europe and America, so A bermudan
option is somewhere between a European option (only exercised at ma-
turity) and an American option (can be exercised at any time until its
maturity).
A Bermudan option is an American option that can be exercised at a fixed
set of dates before its maturity.

slide 6: intrinsic value, in the money, ...
slide 7: option premium

slide 18: understand graph :

We found that the value of a European call with exercise price K on an
underlying stock without dividends is bounded below by the stoc price
and bounded above by the present value of the exercise price:

S—Ke T <(8)< S

If we draw the line ¢(S) = S, then for S = 0, ¢(S) = S is also zero because
c(S) = S and S was zero. Similar, in S =1 we find ¢(S) = 1 so the line
c¢(S) is the line through the origin and with slope 1.

The line ¢(S) = S — Ke~"(T=% also has a slope of one, so it is parallel to
the line above. For S = Ke™ (T~ it holds that ¢(S) = S—Ke "7t =0
so the intersection with the horizontal axis is Ke~"(T—%). Note that this
latter value is smaller than K because e~ "(T=* is smaller than or equal
to one.

As such we have three regions:

Between the vertical axis and the line ¢ = S: take an ”easy point”
in this region, e.g. on the vertical axis. For such point on the vertical
axis we see that S is zero while ¢ is positive, so in this region ¢ > S

Between the line ¢ = S and the line ¢ = S — Ke "(T—1);

At the right of ¢(S) =S — Ke "(T—;

It is important to note that the boundary S — Ke "(T—%) at the right
changes in time !, at T' this boundary moves toward K ! This is indicated

by the red, dashed arrow
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Figure 3: European long call, no dividends, same for Americal long call !

, S
v

c(5)

c>S

slide 19: Question on American call option without dividend, answer it !

Assume at t < T the American option is deep in the money (i.e. the
current stock price Sy is much higher than the strike price K in the option),
will you exercise it? you have a long position in the call, else you do not
have the choice but you have to undergo the choice when you are short.

e If you exercise: then you pay K today at ¢ and you will own the stock
until T’

e If you do not exercise: then you pay K at T" and you own the stock
at T

So at T you will own the stock in both cases, but in the first case you have
paid K at t and in the second case you paid K at T. Since the value of
money is higher when ¢t is earlier, you have paid more in the first case ! so
you will not exercise an American call early (when the underlying has no
dividends). With dividends this can be different !

Moreover, it could be that, even though at ¢ S; > K , at T the stock price
has fallen such that it could be that S < K and then it is cheaper to buy
at St.
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As an American call on a stock with no dividends is never exercised early, this
implies that the graph with the boundaries is the same as for a European call
without dividends, so the same as on slide 18 !

Take this into account in exercises !

slide 22: NEW: understand the graph ! We found that the value of a Euro-
pean put with exercise price K on an underlying stock without dividends
is bounded below by the stoc price and bounded above by the present
value of the exercise price:

Kefr(Tft) B p(S) < Kefr(Tft)

If we draw the line p(S) = Ke "(T=1) then as there is no S in the equation,
it is a horizontal line (derivative toward S is zero). The line p(S) =
Ke "(T=t _ § | cuts the vertical axis in Ke~"(T= (put S = 0, because
on the vertical axis S is zero, to see that) and has slope -1.

As such we have three regions:

Between the vertical axis and the line p = Ke "(T-Y) — §:

Above the horizontal line p = Ke "(T—1);

At the right of p = Ke "(T=%) — § and below p = Ke "(T~%: Thisis
the zone of the possible prices !

It is important to note that the horizontal boundary p = Ke "(T—%)
changes in time , just as well as !, at 7" this boundary moves toward
K ! This is indicated by the red, dashed arrows
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Figure 4: European long put, no dividends

p(9)
K+ . .
l l p> Ke (Tt
o
T
Ke—"(T—1) : : p(S) = Ke~ (=1
e—T(T— I I
N
N\
N
Z ;,(}) Ke—r(T—t) —-S< p(S) < Ke—r(T—t)
A{% Ny
@ \&
=
N NN\ & el
9\ t— T>
<> x&; 7777777777 Hx
&7 K St

slide 23: early exercise of put can be profitable even without dividends !

Assume at ¢ < T the American (long) put option is deep in the money
(i.e. the current stock price S; is much lower than the strike price K in the
option), will you exercise it? (Note that it should be a long put because
with a short put you have no choice to make, you must undergo with a

short put !)

e If you exercise: then you receive K today, and deliver the stock today

(with a value of Sy << K); i.e. you get K — Sy at ¢

e If you do not exercise: then you receive K at T and deliver the stock

(valued St), i.e. you get K — Sy at T

So if K —S; > (K — Sy)e™" (T~ then it is advantages to exercise
the American put early. Tis is the case if S; is very low or if 7 is very

high, so there are occasions when this may happen !

This means that, in the picture with the boundary values of the put option
premium, we can receive K even before T', namely if we decide to exercise
the long put at ¢ that is before T', then we receive K at t. So the figure

for an American long put is different !
NEW:
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Figure 5: American long put, no dividends, at any ¢t < T

p(9)
p>K
p(S) =K
K
P
N
7 K-S<pS) <K
\d)

slide 25-29: know impact of dividends.

slide 28: Impact of dividend payments on an American call:

The effects of dividend payments can easily be analysed. As a rule of thumb
in the formulas for the boundaries you you replace S by S — D* where D*
is the sum of the discounted dividends. Compare this to a forward with-
out Sp and with (Sy — D*) dividends.

So for the call option e.g. the lower boundary becomes ¢(S) > S — D* —
Ke_T(T_t).

Therefor the slide for a call option will no longer be the one on slide 18.
The line that delineates the region on the right will intersect the horizontal
axis at D* + Ke "(T—1);
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As indicated in the graph below this has very important implications; the right
boundary can go further than K !!! (because of D*), even for times ¢ that are
before maturity. If we look at the arguments to illustrate that an American
call without dividends will never be exercised early, then we see that these
arguments no longer hold. So for a dividend paying stock an American call
may be exercised early !

This not a surprise because if you have the right to exercise it at any time, you
may exercise it and obtain the stock, just before the date that a dividend is paid
1"

Please read slides, he does this in terms of intrinsic value !

Compare this to the payoff profile of a European call !

Figure 6: European and American long call, with dividends

slide 29 NEW:: Impact of dividend payments on an American put:

The effects of dividend payments can easily be analysed. As a rule of thumb
in the formulas for the boundaries you you replace S by S — D* where D*
is the sum of the discounted dividends.

So for the call option e.g. the lower boundary becomes Ke™ 7T~ — (S —
D*) < p(9).
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p(S)

Therefore the slide for a put option will no longer be the one on slide 19.
The line that delineates the region on the right will intersect the horizontal
axis at Ke "(T=t) _D*:

As indicated in the graph below this has very important implications; the right
boundary is shifted more to the left by the —D*.

So if we include this in the American put then we get the figure below. Dividends
make early exercise less profitable, this was expected because as log as you do
not exercise the put, you own the underlying stock and you receive all the
dividends, once you have exercised the put, you lose ownershiwp and all the
future dividends ! So if you want to exercise early, always wait until after a
dividend date !

Clearly indicate that D* is the (sum of) the present values of the dividends, the
professor uses PV (D).

Figure 7: American long put, with dividends

p(S) =K
K

K—-S+D"*<p(S) <K

slide 30-42: put-call parity

slide 50: II think this is linked to one of his exam questions, so we have to look

at it

Slide 81: Slide 81 is particular because of the drop in the payoff. you will

need a binary option for that.

Definition 20. A long call has a payoff of max(St — K, 0) meaning that,
if S > K you receive St — K and if Sp < K then you receive zero.
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The binary option looks like that, but you get a fized amount, in other
words, a binary long call has a payoff if ST > K you receive 1 and if
St < K then you receive zero

A binary short call has a payoff if Sp > K you receive —1 and if Sp < K
then you receive zero

St <50 |, 50 < St < 65 St =65 65 < St <70, >70
Target profile 0 i +1 0
I ‘ _ drop -9 ﬂ ‘
So the slope profile is (0,1,0) but at 65 you additionaly need a drop so
you short 9 binary calls with a strike of 65 (not sure about this, can you
ask a question to the assitant 7.

Note that apart from that (0,1,0) is a bull spread.

zeker de put-call parity bekijken

5 Trading strategies with options

see Hull and slides
de logica om het te begrijpen staat onder 6.1, de verschillende strategies

(butterfly, ... ) ken je al en kan je afleiden met wat in 6.1 staat, dus lees eerst
6.1.
6 Options

6.1 Option strategies
6.1.1 Long/short positions in deriatives contracts.

forwards/futures: We have seen that a long position in a forward means that
you are the buyer in a forward contract meaning that have an obligation to buy
at the maturity date T'. A short position in a forward means that you have
an obligation to sell at T'.

Options: Options are a bit more complicated because there are put and call
options, but an options is not about an obligation but about a right.
Your are long when you own the right at 7" and short when you have to
undergo the right.

So being long in a call means that you have the right to buy the underly-
ing at T, being being long in a put mans that you have the right to sell at 7'
Being short in a call means that you have to ”undergo” the right to buy,
so you must sell when the owner decides to buy.
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6.1.2 Payoff functions at maturity T

The payoff diagrams/functions of a position in a derivative learn us what the
profit is of being in that position as a function of the stock price at maturity.

Forward/future: Let’s look at a long/short position:

e Long position in a forward: this means that at T' I have the obligation
to buy the underlying at the contract price K. If K, the contract
price, is smaller than the spot price at that moment, then I have a
profit of S7 — K, if K is more than the spot price then I lose K — S,
so I have a negative profit of Sp — K. If St is on the horizontal axis,
then S — K is a line with s lope of 1, if S = 0 then the line crosses
the vertical axis at —K, if ST = K then we are at zero on the vertical
axis:

P

'K St

e Short position in a forward: this means that at T I have the obligation
to sell the underlying at the contract price K. If K, the contract
price, is smaller than the spot price at that moment, then I have a
loss of ST — K or a profit of K —Sp, if K is more than the spot price
then I win K — S7. If St is on the horizontal axis, then K — St is a
line with s lope of -1, if S = 0 then the line crosses the vertical axis
at K, if St = K then we are at zero on the vertical axis:

P

K~ St

Options: We distinguish between a call option and a put option:
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Call options: Let’s analyse a short and a long position in a call option:

e A long call position mean that we have the right to buy at T,

so if we want we can by at K, we will do that is Sy is higher
than K but if St is lower then we will buy on the spot market
because that is cheaper than K. So if Sp < K then we wil not
earn from our ritght ro buy, else we earn Sy — K, so if St is on
the horizontal axis, then left of K (where Sy < K) our profit
from holding the option is zero) and right of K it is Sp — K, a
half-line with slope 1.
Note that left of K it holds that Sp— K < 0 and then maz (St —
K,0) =0, and right of K it holds that St — K > 0 so max (St —
K,0) = St — K, so the payoff is also equal to maxz (S — K,0).
P

K St

e A short call is the opposite, so we find the payoff diagram below.
Note then when you multiply by -1’ then inequalities turn to the
opposite and max becomes min, so the payoff is min(K — St,0)

P

K~ St

Put options: Let’s analyse a short and a long position in a put option:

e A long put position means that we have the right to sell at T" at
a price K,
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K So

e A short put is the opposite, we have to undergo the right ex-
ercised by the owner of the put; so if S < K then the owner
will exercise his right and sell to you at K while we could have
bought at St < K in the spot (at T'), so you loose K — St or
you win St — K which is a line with an upward slope. After K
the profit/loss is zero
P

K Sy

We summarize this in the payoff table below:

Derivative comment St < K St =K St > K summary

long forward must buy at K loss S — K(< 0) 0 win St — K (> 0) P(Sr)=5S1r—-K

short forward must sell at K win K — Sp(> 0) 0 loss K — St(> 0) P(Sr)=K - Sr
“long call ~ right tobuy at K buyspot,0 0 exercise St — K(>0) P(Str) =maz(St — K,0)

short call undergo 0 0 K —Sr P(St) = min(K — St,0)
“long put  right tosellat K~ win K —Sp o o P(St) = maz(K — St,0)

short put undergo lose K — St 0 0 P(St) =min(St — K, 0)
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Remark 6.1. Adding up graphs:

Choose a point in the horizontal axis and measure the distance to the first line,
for that same point on the horizontal axis, measure the distance to the second
line. This is illustrated by the two black arrows at the left. Add up these two
distances and take this is the vertical highet above the point on the z-axis (red
line at the left).

Do the same for a second point. Now you have tow points on the line that is
the sum of the graphs (the red yhick line).

Note, if the lines have segments, then do this for each segment !

Y

6.1.3 Option strategies.
Bull spread: The figure of the Bull spread is illustrated below.

A bull spread stragey looks as in the picture below. It consists of a horiz-
intal line (this is a line with slope zero), followed by a line with slope +1,
followed by a horizontal line i.e. slope zero.

We have to find basic options/futures positions that give this pattern.
The descriptions of these basic payoffs as a grapgh and as a combination
of slopes is given on slide 47. E.g. a long call starts horizontally (slope
zero) and rises from its strike price on with a slope +1. So it has slope
zero followed by slope 1.
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Ko~ Ky f--------

K, K St

If we loop at the bull spread then we have a sequence of three slopes,
horizontal (slope 0), from K7 on it is rising at slope 1 and then from K»
it is again horizontal with slope 0.

So our target profile, in terms of slopes is :

< K; , between K; and Ko | > K»
Target profile 0 +1 0

How can we find basic positions that combine to this figure ? Start looking
at the figure for the bull spread, at the left hand side and find a naked
(or basic) strategy like that. If you look at slide 47 then you see that
the begin (at the left) looks as Long call with strike price K;. So a long
call with strike price K7 has a ”slope profile” ginevn in the table below:
< K, | between K; and Ky | > Ko
Long call, strike K3 0o ! +1 Lo+l

So it is fine at the beginning, but after K5 it does not fit our target. To
come to our target, we may make no change to the slope until Ky, so we
have to add a something with slope zero until K5 and after Ko we have to
add something that compensates the slope in the above table (+1) to the
one in our target table (0). So we need something with slope zero until
K5 and then -1 after K5. The naked psoitions at slide 47 learn that we
need a short call with strike price Ko. Let’s try:

< K; | between K; and Ko | > Ko
Long call, strike K, 0o ! +1 b+l
Short call, strike Ky 0 : 0 : -1
Combination (sum) 0 ! +1 1o

If you compare this to our target profile, then we see that the target is
obtained by combining a long call with strike price K; and a short call
with strike price Ks.

There are other solutions, with long calls, but it’s a bit more tricky:
Note that I need a slope sequence (0,1,0) and supra this was found as
(0,1,1)+(0,0,-1)=(0,1,0). But I could also add other combinations:

(-1,0,0)+(1,1,0)=(0,1,0) so if T add up two basic (naked) strategies (-1,0,0)
i.e. mnegative slope followed by horizontal from K; on and (1,1,0) i.e.
positive slope and from Ks on horizontal, then I also get the target !
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These are a long put with struke K (negative slope followed by horizontal
from K7) and s sohort put woth strike Ky (positive slope and from K5 on
horizontal)

Bear spread: can be constructed in two ways:

6.2 The value of a call option; replicating portfolio’s

Let’s analyse a share with spot price Sy at t = 0 and let us assume (hence ’tree’)
that the price can go up in the next period to Sy X u or go down to Soxd,d < uﬂ

Then at t = 1 the value of a European call with exercise price K will be
in the first case EC, = max(u - Sy — K,0), in the second case it would be
ECy = max(d- Sp— K,0). This is shown in figure

q is the probability that the price moves up, consequently (1 — ¢) is the
probability of a downward move.

We would like to find the value ECy of a call option today.

Note that at ¢ = 0 the value of Sy can be observed on the spot market, so we
know the value of Sy, with that (and other information) we wish to find the
value of a call option at ¢t = 0. Note for a put it is still different !

Figure 8: Option value using a Binomial tree
S() U
EC, = mazx(u-Sy— K,0)

So
ECy 77

So-d
EC, = maz(d- Sy — K,0)

In order to do this, we will create a ”replicating portfolio” also called a
”synthetic option” as follows: we will borrow money (an amount B) and buy
the stock A shares, and at the same time sell European calls.

Remark: This A is just a variable, it is confusing because A usually has the
meaning of ”difference” but here it is not, it would have been better to use e.g.
N.

950 if the price increases by 10pct then u = 1.1.
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Remark 6.2. Note that this is similar with what we dit for a forwarﬂ: we
borrowed money to buy the stock and because of arbitrage we found (simple case)
FO = SoerAt.

Because of the assymetry in options you will not have to buy one share but
Zan unknown number of shares”.

Remark 6.3. This does not work for a put option, with a call we can buy stock
today and keep it, or we can buy it at T. That does not work for a put !, we
will have to use the put-call parity to find the value for a put (CHECK).

Moreover, we will make that portfolio to ”replicate” the option, that means
that, whatever the the price movement is, the value of our portfolio is the same
as the value of the option, so if the price moves to Spu then our potfolio must
be woth EC, but if it moves to Spd the value of our portfolio must be ECj.
That is the case if both of these conditions are fulfilled:

A-Sy-u+B-e"? = EC,
A-Sy-d+B-e"? = EC,

Subtracting both equations we find A - (Sou — Sod) = EC, — ECq or A =

% and subsituting this in one of the other equations you find B =

A _ FC.—ECy
(Sou — Sod)
B = u~ECd7d~ECu
(u — d)erat

So if we know u,d, Sy, r, At then we can compute A and B such that a
portfolio of A shares of the stoch and a loan of B EUR have the same value as
a call option after one period. In other words the value today should also be
the value of that protfolio today and we find that

ECo=A-Sy+B (28)

where A and B are as supra.

So we can now find a value for the call option, if we know u, d, Sy, r, At. At
t = 0 we know Sy and r, we also know At. u and d are problematic, we can not
know the value of the share in the future | We will see how we can find these
later.
Remark 6.4. Note that A = % and I think (CHECK) that this A <1
and in most cases strictly smaller. Remember that for a forward (see section

10Note that this is the same reasoning as for determining the delivery price for a forward,
see section Only because we are not sure that the option will be exercised we can not
buy a full unit of the stock, but a number A of stock.
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M) we bought a full share of stock at t =0, for an option we only buy a part
(A), that is because at maturity you are not sure to be able to buy it, it is an
option, so sometimes it will be sometimes not and “on average” it can be less
than 1 share that is bought at maturity !

First we re-write the value ECj using the expressions for A and B:

ECM—ECd uEC’d—dECu
E =
Co Sot—5d) ° T T u—dyera
ECu—ECd + ’U,~ECd—d~ECu
(u—d) (u — d)erat

EC,—EC;4+u-ECy-e ™ —d.EC, -e "2t

u—d
_ EC,(1—d-e ")+ ECy(u-e "2 —1)
- u—d
rAt _ _ rAt
— A Eguu+ECdL
u—d u—d

6.3 Risk neutral probabilities.

Note that e:figd + “;e:dm =1 so if we define p = ‘ifigd then this becomes:
ECy = (px ECy 4 (1 — p)ECy) e ™A1 (29)

If we treat p as a probability to move to Sy - u (remember from figure
that the true (unknown probability is ¢)) then (there are only two possibilities)
(1 — p) can be seen as the ”probability” to move to Sy - d and it can be seen
from this equation tha@

Property 25. The value of the call at t = 0 i.e. ECy is the expected value
of the payoff of the option in At discounted to t = 0 but therefore we have to
work with a redefined probability p in stead of the "true” probability q.

This "new probability is ”as if” we have changed the unit of measurement
for probabilities, and therefore we do not get no longer the value ¢ that we
observe in the real world (see figure [8) but because of the ”change of units” we
get another value p = e:f_t;d.

Moreover, when we use this "new probability measure” we can discount at
the risk free rate of interest, even for a call option which is usually not a risk
free instrument. In other words, if we change from our "real world” where
the probability of a price increase is g, to a new world where probabilities
are measured in ”another unit” then the value of an option can be computed

1 Remember that the expected value of a random variable is the sum of each outcome of
the variable, multiplied by the probability of the outcome, i.e. E(X) = Y, p;x; in this case
we have to outcomes EC,, and EC; each with an ”artificially constructed” probability p resp.
(1-p).
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very easily nemaly as the expected value of the option price for the next period,
discounted at the risk free discount rate. So this world is as if it is "risk neutral”.

Property 26. So in the risk neutral world the computation of call options
becomes very easy, (1) we take the expected value of the payoffs in the next
period, using the risk neutral probability and (2) discounting is at the risk free
rate. Note however that probabilities is this world have different values than
these in our real world !

The risk neutral probability of an upward price move is defined as

erAt —d

P=TTa

The ”clue” underlying the risk neutral world is that we value an options
in terms of the underlying stock, so that the formulas stay the same when the
stock price changes (because the formulas are in terms of these stock prices).

rAt rA
Note that p = e:jgd = S‘fsfouigf;d, remember that (in the simples case)

Fy = Spe®! is what we should take as the forward price, i.e. out ”estimate”
of the price in the next period t + At. Let’s note this as S¥, further Syu is
the high price in the next period, so let’s note it S and similar S¥ for the low
SP—St
e

These values are

price in the next period, then it can be seen that p =
schematised in the figure [0

Figure 9: Risk neutral probabilities.
[ } [
st SE st

SE st

St - st

Property 27. So the risk neutral probability measures the position of the ”es-
timated” price in the next period, relative to the difference between the highest
and the lowest price in the next period.

So the risk neutral probability measures probabilities in terms of prices of the
underlying stock !

6.4 How to get values for v and d

You should not know this in detail, but it will help you to understand the
formulas and therefore it is very usefull to make all kinds of exercises.

Note that u - Sy is the high price in the next period t + At, let us note
it as Say = Sp - u. Then the difference in price between the two periods is
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AS = Say — Sg = Sp - u — Sy and the relative price change is SSAOt =u—1. So
u — 1 is the relative change for the highest price in the next period. Similar for
d—1.

So u and d have to do with changes in the stock price, how can we "model”’
these 7

Price changes for a stock are a sequence of values Sy, S1, S, . . ., and we could
try to finc some regression to fit a line, i.e. something like S = By + S1t + €
where € is the error term that has a normal distribution. It seemed that such a
regression is too simple because the stock price S; does not change in a linear

way. It turns out that it is better to do a regression for %—f as a function of At,
ie.
AS
— = plAt+e
S /"L

where € ~ N(0,0vAt) or written differently, for each time point ¢, the %
is a_ normal distribution:

% ~ N (uAt,a@)

Graphically this means that these stock prices look like in the ﬁgurelE

250 -

- type
w S_t {mu and sigma)

aall * Trend {mu)

¥

years

This can help us to find values for u and d: we have a "model” where the
price can go "up” or "down”, the probability to go up is ¢, the probability to
go down is 1 — ¢. So this is a Bernoulli random variable.

So we have a growth AS/S = u—1 with a probability ¢ and growth AS/S =
d — 1 with a probability 1 — g, so the "expected growth” with this Bernoulli (or
Binomial) model is ¢ x (u — 1) + (1 — ¢)(d — 1). If the model supra, with
the normal variable, is correct, then this should be the same mean or : ¢ x
(u—1)+ (1 —¢q)(d —1) = pAt. For the variance we get a similar equation:
qlu—1—pAt)?> + (1 —q)(d — 1 — pAt)? = o2 At

121ndeed if % = pAt+e, then S —Si—1 = (LAt+¢€)St—1 or S¢ = (1+puAt+¢€)Si—1,

if we use this result to replace Sy_yj, ... then you find S¢ = (1 + uAt + €)tSp. If € would be
zero then you have someting like compounding, this is the green line. The random € gives the
red line that deviates in an unpredictable (random) way from the green one.
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We now have two equations with unknowns u, d, ¢, so we need one addional
equation, we assume that v -d = 1 or that d = 1/u which means that the "up”
or ”down” movement are symmetric. (if I go up by u-1=10% then you go down
by d-1=-10%, u-d = 1.1 x 0.9 =~ 1).

So now we have

gx (-4 (1-gd-1) = uAt
qlu —1—pAt)? + (1 —q)(d — 1 — pAt)> = o*At
u-d = 1

If you have o and p then we can solve this to find u, d, ¢ and we find

u = VAt
d = e—oVAT
e/LAt _
¢ = "true world” probability
w—

1 and o can be found using regression techniques.

Remember that the risk neutral probability is

erAt —d

u—d

p= , “risk neutral” probability

For a European call option (EC) without dividend payments it holds that:

EC, = e A (PECiiatu + (1 —p)ECtyat.a)

where 7 is the risk free rate of interest, p the risk neutral probability as above,
ECi+at.u the value of the option in ¢ + At in case of a price increase and
ECyiyat,q the value of the option in t + At in case of a price decrease.

6.5 Binomial trees

The valuation technique described above was used for ”one step”, i.e. we look
one period At in the future. In more realistic cases we hvae to look at more
than one period in the future: At,2At,.... Note that At is always in years, so
e.g. 1 month is 1/12. Schematically we would get a tree-structure like in this
figure (for 3 steps in the future) :

71



S()Xd3

There are two ways to tackle that problem: backward computation and
Binomial probabilities. Both methods are based on the finding that the value
of a European call is the expected value of the future payoffs measured with the
risk neutral probability p and discounted at the risk free interest rate.

Remember that a random variable has different outcomes z; with each value
having its own probability of occurrence p;. The expected value of that random
variable is then E(X) = ). p;z;. Note, in our case we have a value in case of an
increasing price V* with a probability p and a value down V¢ with a probability
1 — p therefore E(V) =p- V¥ + (1 —p)V<

So in order to compute the expected value, we have to find (a) all possible
outcomes and (b) for each outcome the probability of occurrence.

At maturity the option can have different values, depending on the spot price
at maturity. For an exercise price K we have for a European call at maturity
(the notation EC3* means after three steps (subscript) that are three times up

(3u)):
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t=20 At 2A¢ 3At
EC3" = max(Sy x u® — K,0)

EC?* = max(Sp - u? - d — K,0)

ECY = max(Sy - u - d® — K,0)

EC{* = max(So x d® — K, 0)

6.5.1 Backward computation

This method works ”one step at a time” and from the right to the left: so move
back, and at each intersecting node, compute the value in the node using the risk
neutral probability p and the risk free interest rate r, i.e. (p x EC3* + (1 — p)EC%“)) e AL
Note that p is always multiplied with the branch that moves up, (1 — p) with

the branch that moves down. An example is shown in the figure:
|

t=20 At 2At 3AtL
EC3" = max(Sy x u — K,0)

(px EC§* + (1 - p)EC3")) e AL

EC2* = max(Sy x d> — K,0)

Repeat this for all the nodes at 2At. After that move backwards to At in a
similar way and then at ¢ = 0 you find the value of the call.
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6.5.2 Binomial probabilities

If the tree has a lot of steps then the backward computation will be very time
consuming and error prone, the use of the Binomial probabilities will be much
more efficient. This works as follows:

Here the reasoning is very similar, but we work only on the right side of the
tree. At 3At we have the different possible values for the option at maturity.
To compute the expected value we need also the probability of each outcome.
We are now trying to find these probabilities.

e The probability to have a value of EC5% after three steps is the probability
to move 3 times up in three steps knowing that the probbaility to move
up in one step is p. So I need (u,u,u) or three times u, the probability is
threfore p x p x p = p>.

e The probability to have a value of EC3" is the probability to go two times
up in three times, I can have (u,u,d) the probability is that we have u
(probability p) another u (p?) and d (p*(1 — p)). But we can also have
(w,d,u) (p(1 —p)p) and ((d,u,u)) ((1 — p)p?). Se we find 3p(1 — p)?

e In general, if you have a three with IV steps and you need to go up n times,
knowing that in one step the probability to go up is p, you can compute
the probability of n up moves in N steps as the Binomial probabilities

(Mpr (1 —p)N—n

So now we have, at maturity, all the possible values of out European call
and the probability of each value. With this we can compute the expected value
at maturity as the value times the probability and then sum all that:

probability of value probability of value
value value
,-AS-\ 3 3 3-3 ’-/\2-\ 3 2 3—-2
u - u -
E(Vaar) = EC5"x 5P (1-p)> >+ EC3" x 5 )P (1-p)
probability of value probability of value

value — value

+ EC3"x <1>p1(1 —-p)* '+ EC3" x <O>p0(1 —p)*7°

This is the value at maturity, so we have to discount it at the risk free interest
rate so our option value at t =0 is

VO — E(V3A)€7T(3At>
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6.6 The model of Black-Merton-Scholes.
6.6.1 The goal of this chapter.

In the previous section we have seen a simple model to find the value of an
option that expires at time 7T in the future. This price depends on the values
St in the future (see Binomial trees) and therefore;

1. We had to know all the values St,1,ST,2, 57,3 ... of the underlying stock
that are possible at T' where T is in the future.

2. Compute the probabilities of each of the values for the stock p; being the
probability that the value of the stock at 7" is equal to St ;;

3. Compute the expected value of the option at T: E®)(ECy) = > Di X
max(St,; — K,0); The superscript (p) is used to indicated that we changed
to the "risk neutral” world, which is the same as the real world, but where
probabilities are measured in other units.

4. Discount this result from 7T in the future to today: ECy = e~ "(T-OE®) (ECy).

We have seen how we do can this using a Binomial tree, however, we had
to make simplifying assumptions: we assumed that we could proceed in several
"steps” and that in each step the stock price can go up to Spu or down to Syd,
so in the next step we can have only two different values.

NOTE: In reality we do not know the number of steps, and there will be
much more possible values than these two, moreover we have assumed that u
and d are the same in every step which is also unrealistic.

If u and p were the same all the time, then we are able to build a "replicating
portfolio” with A shares of stock and a loan B. This number A depended (see
supra) on numbers that are constant, so A was fixed between t =0 and t =T
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We need to generalise this to more realistic assumptions, so we have to find a
more realistic "model” of how the price of the underlying stock evolves in the
future.

e First we will generalise the number of steps, we will, between ¢t = 0 and
t = T take an infinite number of infinitely small steps dt. So we will no
longer work with sums, but with integrals;

e The second generalisation is that there are not only two possible values in
the next step, but an infinite number that all are between —oo and +o0.
As before, we will also need the probabilities and we will assume that
these are the probabilities of the normal distribution. So at each point in
time between t = 0 and ¢t = T, with steps of dt we will have a normal
distribution for Sy 4.

Such a series of distributions is called a stochastic process, usually the
distribution at at point in time ¢ depends on the distribution in the previ-
ous time point (but not on the ones therefore), i.e. the Markov property.

We will see that we wil also contruct a "replicating portfolio”, but the portfolio
will change constantly in time !

We can do this for any ¢ in the future (i.e. t > 0) so we have S; that is
a single value, and S, that is a distribution, S;, that is a distribution. So we
have:

known value distribution distribution distribution
et et =~
SO — Stl — StQ R St

Stochastic process

And each of these distributions is a normal distribution, this means that at
each time point between t = 0 and ¢t = T we have a random outcome for the
spot price S; and thus also for Sp. Twelve examples of such outcomes are shown
below:
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You can see that at the end t = T we find different values, that are reached
via different paths. The problem that we face is that we have to find all the
possible values for S and their probability, i.e. how many of these paths
bring us into that particular value for Sp. For the Biniomial trees we
worked with a simple model that made it such that these probabilites could
be computed with a Binomial random variable using a risk neutral probability
measure. when we work with our more general model, the stochastic process
supra, this will be more complicated, but the results will be more realistic.

We will therefore first give a short summary on probabilities and probability
distributions, in particular the normal distribution that we will use a lot.

6.6.2 Important properties of the normal distribution (repetition of
stats course)

This is just a review of what you should remember from your statistics course:
A random variable is a variable whose outcome is not known in advance.
What we do know however is (1) the list of all possible outcomes and (2) for
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each outcome we know its probability.

For example, rolling a dice can have outcomes 1 or 2 or ... 6, each with a
probability of 1/6. But we do not know in advance what the outcome will be.
For ach outcome z; we know the probability of the outcome ;.

The expected value (or mean) of a random variable is defined as E(X) =
> Tipi. Once we know the mean we can compute the variance Var(X) =
>, pi(wi —E(X))?. The standard deviation is the square root of the variance:
7(X) = /Var(X)

These are definitions for discrete variables. For continuous variables the
definition is similar only that we can not define the probability of a single
value as outcome. We have to define the probability that the outcome is in
an interval. Moreover the sums will become integrals. So if X is a continuous
random variable with a probability density ¢(X) then the expected value or the

mean is defined as E(X) = fj;o z(z)dz. This is a number that is known once

we know ¢(X) The variance is defined as E(X) = sz(x —E(X))%p(z)dx. Tt
is also a known number once ¢(X) is known.

A very ofthen used random continuous variable is the normal variable. It
is characterised by a ¢(X) that has two parameters p and o, therefore we will
sometimes write ¢, ». The formula for the density of the normal variable with
parameters p and o is (don’t learn this by heart)

1 _(=—w?
e 202

€Tr) =
Pu,o () oo

This normal variable has random outcomes between —oco and +oo and the
mean is the parameter u, the standard deviation is the parameter o.

The probability that a random outcome is in the intercval [a, b] is f; Yo (x)de.

There are some important properties:

Property 28. If X is a normal random variable with mean p and standard
deviation o we write it as X ~ N(u,0) |E|

o if we add a fired number a to a normal random variable X then the variable
X + a also has random outcomes. It can be shown that it is also normal
with mean p+ a and the standard deviation stays the same:

X ~N(u,0) = X+a~ N(uta,o), no change to o !

o If we multiply a random mormal variable with a fired number a then the
new variable will also have random outcomes. This new random variable
will also be normal with a mean and standard deviation both multiplied by
a:

X ~N(p,0) = X-a~ N(pa,0-a)

e from this it follows that, if X ~ N(u,o) then when we define z = S=£

we find that z ~ N(0,1). A random variable that is normal with a mean

13Tn some books the second parameter is the variance, then the notation is X ~ N(u,0?).
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equal to zero and a standard deviation of 1 is called standard normal. For
a standard normal variable we use ¢ for the density, so we do not indicate
the subscripts ’0,1°.

e The inverse is also true: if z ~ N(0,1) then X = u+ oz will be Normal
with mean p and standard deviation o.

o If X ~ N(u,o0) then the probability that X has a value smaller than or
equal to a is P(X <a) = [*_ pu.(z)dx.

The probability that a normal random variable is smaller than (or equal to)
a is called the cumulative probability and is denote with ¢, so ¢, -(a) =
P(X <a).

If we do this for all possible values a then we get a function, this is the
cumulative density function of the random normal variable X .

o If X ~ N(u,o) then the probability that X has a value greater than a is
P(X>a)= [ ¢ o(x)de=1— I euol(a)da.

a

o If X ~ N(u,0) then the probability that X has a value equal to a is
P(X =a)= [ ¢uo(x)dx =0.

Therefore P(X > a) =P(X >a or X =a))=P(X >a)+P(X =a) =

P(X > a).
e If X ~ N(u,0) then the probability that X has a between a and b is
b
Ji uo()de.
This is the surface of the area under the curve of v, -(x) between a and
b.

We will use these properties very often, e.g. if dz ~ N(0, \/%) then e = 92

Vit
will be normal N(0,1) or dz = € - v/dt where e ~ N(0,1).
Another example, if we know that In(St) — In(Sp) ~ N(u, o) then we know
that in(St) ~ N(u+ In(So),0)

6.6.3 A model for stock prices.

If we want to know how the value of a derivative evolves in the future, then, as
the value of a derivative depends on the value of the underlying stock, we will
have to assume some pattern for the stock price. We saw in the introduction
that we will use stochastic processes to do that:

known value distribution distribution distribution

SO — St1 — St2 R St

Stochastic process

The point now is to find what that distribution, or better the whole series
of distributions, looks like.
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As a parenthesis: Think about your course on ecomometrics, more
in particular, linear regression. There you had a dependent variable
y and if you want to “estimate” how it evolves with e.g. the in-
dependent variable time, then you would make a "model” like y =
Bo+ Bit+u, where u ~ N(0,0). But taking into account the proper-
ties of a normal distribution in the previous section this can also we
written as y ~ N(Bo+ Bit,0). So for each t you have a distribution
! So in essence this is a special case of such a stochastic process.

With linear regresstion you sometimes transformed the variables, like
Yy =In(y) or other.

Also with linear regression you have to find a "function” that best
reflects the real link between y and t.

All the reasoning below is just an application of that !

The choice of the functional form and of the transformations of the variables
is of course crucial for the quality of the predictions in the future. By looking at
the data, experts like Merton, Black, Scholes and others have ”found” that the
percentage growtlﬂ of the stock price between to time points is proportional to
the time passed between the two time points, and to model uncertainty, there
is also an error that is normal with mean 0 and a standard deviation that is
proportional to the square root of the time passed: StS;OSO = p(t — 0) + u where
u ~ N(0,04/(t —0)) but only if ¢ is very small, so % = pdf + u where u ~
N(0,0v/dt), and using the properties of a normal variable we find % = pdt+o-e
where e ~ N (0,/dt).

Just to simplify the notation we will use dz in stead of e, but remember that
dz is not a differential but a random variable with a standard deviation v/dt
and mean zero. Therefore we will use boldface in the notation.

d
?S = pdt + odz where dz ~ N (0, Vdt)

ds

! o is called the volatility.)

Note that there is a component that makes the percentage change in the stock
price % increase in time (1), this is called the drift (sometimes expected return).
But at each pount in time we add a random components that has a normal
distribution with a standard deviation that is ov/dt, so the stndard deviation
gets larger with time (this can be seen on the figures of the stochastic processes

Using the properties of the normal distribution we can also write dz = ev/ dt
where € ~ N (0, 1), so the above formula can also be written as:
as

< = pdt + oeV/dt where € ~ N(0,1)

In terms of (small) differences we will write:

14Note that if you want to know the percentage growth from 150 to 160 you compute
(160-150)/150.

80



% = pAt + oAz where Az ~ N(0, VAt)

It is very important to understand what this formula means; It says that the
percentage change in the stock price in a time At is proportional to the length
of the time interval At (i.e. pAt) plus a deviation that is proportional to a
random number drawn from a normal distribution and that also depends on
At. Note that a random draw from any normal distribution Aa could be any

number between —oo and 400, so this could be a large number !

Remark 6.5. An important remark must be made here:
If (1111) the model would have been % = pdt then, knowing that d(In(zx))/dx =

1/xz, so d(in(x)) = dz/x you can see that d(In(S)) = % = pdt and also
Jyd(In(S)) = [5 dt or in(Sy) = In(So) + pu(t — 0) or S; = Spet.
This is the smooth line in the graph below.

25D
20D - type
w * 5 t{mu and sigma}
- * Trend {mu)

100 -

8- ! )
2000 2005 2010
years

However, the model is not (!! % = pdt but % = pdt + oeV/dt and we do

not know how we can integrate \/dt, nor do we know how we can integrate € 722
To find a solution for that we will need Ito’s lemma, therefore we give a short
summary on stochastic processes.
Note, the zig-zag line in the figure is one random outcome of % = pdt +

oeVdt, because € is random there are other possible outcomes !!!

6.6.4 Stochastic processes.

We have seen that stochastic processes are a series of random variables. They
can be described by their changes in time, like e.g. the dS as a function of dt
supra.

We will define several kinds of stochastic process, from simple ones to more
complex ones:

Definition 21. We define the following stochastic processes:
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e The simplest process is a standard random variable multiplied by the square
root of dt. This is called a Wiener process, so a Wiener process dz is

dz = e/dt where e ~ N(0,1).

e A Generalised Wiener process, x(t) is a process described by dx = a - dt +
b-dz, where dz is a Wiener process and a and b are constants.

a s called the drift and b is called the volatility of the process. The drift
describes a kind of ”average” (like the smooth line in the figure supra) and
b described the width of the movements around that smooth line.

Note that in our case we have % = pudt+odz ordS =p-S-dt+o-S5-dz,
soa=p-S and b= o0-S are not constant because they depend on S, so
we further generalise:

e An Tto process, z(t) is a process described by dx = a(x,t) - dt + b(z,t) -
dz, where dz is a Wiener process. So an Ito process has a mon-constant
drift/volatility.

o A Geometric Brownian Motion is a spcial kind of Ito process, namly an
Ito process with drift of the form a(x,t) = px and volatility of the form
b(z,t) = ox.

Our stock price model in the previous section was % = udt + odz or
dS=p-S-dt+o-5-dz, so it is a Geometric Brownian Motion !

We already mentioned that the prices of a derivative are a function of S and
Ito’s lemma tells us how a function of an Ito process changes in time:

Property 29. This is Ito’s lemma:
If x(t) is an Ito process, i.e. if dez = a(x,t)dt +b(x,t)dz and G is a function
of x then the change of G in time is governed by:

oG 0G  ,10°G oG
dG = (a&c + 5 b 28902) dt + b —dz where dz ~ N (0, Vi)

Let’s give a "heuristic proof”, i.e. just the big ideas;

As we will use this for x=S, we use S in stead of x.

If G is a function that is differentiable with respect to S and ¢, then
via a Taylor expansion we find

_ 090G G 192G A Q2 | 19°G Ag2 . 0°G
AG = 53AS + GPAL + 5555 AS? + 557 At + 555; ASAL + ...
As we let At — 0 then At? goes even faster to zero, just as AtAS

and all the further terms. So we find that
AG ~ BEAS + 98 At + 3G AS?

2 052
If AS is an Ito process, then by the above definition we know that
AS = a(S,t)At + b(S,t)Az where Az is not a differential but a
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Normal random variable with a standard deviation that depends on

VAL,

oG oG 19%G

g5 (At +bAZ) + Fr AL+ S 5e
1 2

—gg (aAt + bAzZ) + —%C: At + E—ZSC: (CLQAtZ + b2 Az? 4 2abAzAL)

AG

Q

(aAt 4 bAZ)?

Q

Note that Az is N(0,vAt) so Az can be re-written as Az = e- VAt
where € ~ N(0,1).

2
%(aAt + bAZ) + 9G At + EE(azAt2 + b2 At + 2abeV AtAt)

AG S ot 2082

Q

When At — 0 then powers of At go to zero, At> — 0, At3/? — 0,
so AS? ~ b2e2At.

—b2dt when At—0

2 —
%(aAt +bAz) + %At + %% b 2 At
Note that € ~ N(0,1) and as E(¢?) = 1 we find that E(¢?At) — dt,
moreover, the variance Var(e2At) — 0 so in the limit €2At goes to
a random variable with mean dt and variance zero, so it becomes
dt. If you look at the normal distribution (the Gauss curve) with
a certain mean and a variance (i.e. the "width” of the bell-shaped
curve) of zero then this is a single value, equal to the mean, in this
case that mean is dt.

~ 0G G 18%°G12 .94 _ 9G G 18%G 12
dG ~ ﬁd5+ Wdtjtiasgb dt = ﬁ(adt+bdz)+adt+§as2b dt

Rearranging the terms gives the formula in the Ito Lemma.

AG =~

6.6.5 Important applications of Ito’s Lemma

Evolution of forward prices: We have seen that the price if a forward de-
pends on the stock price in the following way E=8e"T=8), 5o obviously
F depends on S, so now we want to find out how F' changes in time,
knowing the evolution of S in time.

Assuming that the stock prices for the future follow a a Geometric Brow-
nian Motion, i.e. dS = uSdt + 0Sdz,dz ~ N(0,/df) we want to find a
formula for dF.

It seems that is a function of S, namely F(S) = Se"™~* and because S
follows (by assumption) an Ito process (because the Geometric Brownian
Motion is a special kind of Ito process) we can apply Ito’s lemma to

G(S) = F(8) = Ser (T~
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Writing dS = pSdt + 0Sdz,dz ~ N(0,/df) in the form of
an Ito process dx = a(S,t) - dt + b(S,t) - dz it follows that
a(S,t) = pS,b(S,t) = oS.

For a forward we can see that G(S) = Se"(T=1),

Ito’s lemma tells us that (because S is an Ito process) the price
of the forward changes in time as :

4G = (02§ + %2 + 1?1 59 dt + b95dz

We know that (cfr supra) a(S,t) = uS,b(S,t) = 05, so the only
thing we need are the partial derivatives of G where G(S) =

Ser(T—t),
Using the rules for derivation we find % =e"(T—1), %—? =—rF,
%G _
a5z = 0.
Substituting all this into the formula above we find:
F F

—— ——
dG = | pSe ™Y —yF | dt + 0 Se" TV dz = (u — r)Fdt +
ocFdz

Since we defined (see supra) G(S) = F(S) we find that dG = dF so
E
F

At first glance this looks just like a formula, but this is a very important
result:

Property 30. We find:

= (u—r)dt+ odz

We started from a model of our stock prices, it was a stochastic process (a
Geometric Brownian Motion) that described how the stock price in the future
may look like and the uncertainty we have about these prices in the future, and
now , using that and Ito’s lemma, we find how the forward prices will evolve in
the future , it is also a Geometric Brownian Motion with drift @ — r and with
the same volatility o.

known wvalue distribution distribution distribution
= ~ = =
So — Sty - S .= St

Stochastic process

known wvalue distribution distribution distribution
= = = =
== Fy — Fy, — F, ce. = Fr

Stochastic process

And when we know the distribution of the forward prices, we can compute the
probability that this price in the future will be more than ...
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Continuous returns: But there is more ...

However, we already stated that, if the spotprice of a stock is Geometric
Brownian Motion, so % = udt 4+ cev/dt, but we do not know how we can

integrate v/ dt, nor do we know how we can integrate € !!

Ito’s lemma will allow us to do so:

Let us assume that S follows a Geometric Brownian Motion,
ie. S = pSdt+ 0Sdz,dz ~ N(0,v/dt). And let us look at the
evolution of G = In(S).

As in the previous example we can see that this is an Ito process
with a(S,t) = pS,b(S,t) = oS.

As G(S) = In(S) it holds that g—g =z, %C; =0 and 2 652 =—3
Ito’s lemma says (because S is an Ito process):

dG = (uS% — 3(09)?gz) dt + 0S¢dz
or we find that

1
dG = (,u — 202) dt + odz

As dz ~ N(0,/dt) it follows that:
dG ~ N((u — 50?) dt; o+/dt) or in terms of (small) differences:

26~ (- 30*) Atiovai)

Since have choosen G(S) = In(S) and let Sy be the stock at
t =0 and Sy the stock at ¢t = T, then AG = G(St) — G(Sp) =
In(St) —In(Sp) and At =T — 0, so we have In(St) — ln(SO)

N ((,u —10%) T;0o T) orin(Sr) ~ N (ln(So) +(p— 30T o\/>)

Property 31. If the stock price follows a Geometric Brownian Motion,
i.e. dS = pSdt + 0Sdz,dz ~ N(0,V/dt), then

d(In(S)) = (,u - ;0’2) dt + odz,dz ~ N (0, Vdt)

and also

In(Sy) ~ N (ln(So) + (u - ;0’2) T; a\FT)

Note that this is no longer about dS, but about St for any future time T !II So
we have found a way to "integrate” the Geometric Brownian motion !!

Note that St is not one value but a distribution , so an infinite number of values,
each with its own probability!!

This result and the tables of the normal distribution can be used to find the
probabilities that In(St) is in a certain interval. (1 and o must be estimated
form historical data on stock prices, T is known and Sqy is also known.
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Definition 22. If In(St) has a normal distribution with parameters p
and parameters o then we say that St has a lognormal distribution.

Using the property of the normal distribution we can write:

In(St) ~In(So) + (n— 20*) T + ov/Te where € ~ N(0,1). With this we
can do monte-carlo simulations, e.g. assume we use historical data and
find that p = 12% and o = 15% and let Sy = 20, then we find one possible
path:

t

You can clearly see the drift (average upward trend) and the volatility
(spread), the latter increases with ¢ (because of the ov/¢, so the standard
deviations of each distribtion of S; becomes wider as time moves on).

An example of how we can use this: (Hull 11.16)
Assume that the stock price is log-normal, i.e.

In(St) ~ N (ln(So) + (p— 30?) T; U\/T).
The current stock price is 50, return is 12% and volatility is 30%. What is the
probaility that the stock price will be above 80 in two years 7

So we have Sy =50,u =0.12,0 =0.3,T =2

In(So) + (1 — 30%) T = In(50) + (0.12 — 30.3?) 2 = 4.062023
oVT = 0.3v/2 = 0.4242641

So by the above we know that in(Sr) ~ N(4.062023,0.4242641)
S >80 <= In(Sr) > In(80) = 4.3820266

We know the probabilities of In(St) because we know its distribution
namely Normal with mean 4.062023 and standard deviation 0.4242641.
So we can compute the probabilty that

P(Sr > 80) = P(In(St) > 4.3820266) = ;o> . o(a)dx = 0.2253479.

This integral can be found using the tables of the normal distribution
and/or with a calculator.
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You can also compute the 95% interval.

A note on d(In(5)), with S a stochastic process: If S would be a func-
tion then d(In(S)) is dS/S but from the above we see that this does
not hold when S is a stochastic process. You can not apply the rules of
"normal derivation” to stochastic processes, you must use Ito’s lemma !

Indeed, the Geometric Brownian Motion for the stock price S with drift
w1 and volatility o is % = pdt + odz.
With Ito’s lemma we found d(In(S)) = (u— 10?) dt + odz

if d(In(S)) would be equal to dS/S as would be the case if the normal rules
of derivation would hold, then both can not be true because we would then
find two different expressions of dS/S.

So be carefull to apply rules of normal derivation when working with stochastic
processes !!

Why is this ?

o Well if S is not a stochastic process then you can apply the normal
rules, so d(In(S)) = dS/S so if this would be equal to udt , without
the random term in dz then after integration you would find in(St) =
In(So) + puT or St = SpetT when no stochatsic process !! Because
there is no stochastic term the same p holds everywhere between 0
and T. e.g. if p = 3% and T = 2 and Sy = 1 then Sy = 293%2 =
1.0618365.

e if S'is a stochastic process with dS/S = udt+odz then we are adding
an random value odz to the p and that random value os zero on
average and symmetric (normal variable is symmetric). So it is a p
that is ”on average” equal to 3% and e.g. in the first year it could
be 2.5% and in the second 3.5% (this is on average 3%)
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The growth between 0 and T = 2 would now be e0-025x10-035x1 —

1.059715.
So with the stochastic process it is lower !!!' (this is where the p— %(f
comes from)

2

But be carefull with derivations and integrations when working with stochastic
processes , you can recognise the stochastic processes when you have a dz or a

Vi !

The evolution of forward prices: Note that supra we found if the stock
prices follow a Geometric Brownian Motion with drift ¢ and o, i.e. % =
udt + odz then the forward prices for futuire periods are governed by a

stochastic process defined as % = (u—r)dt + odz, this is ... a Geometric

Brownian Motion with drift g’ = g — 7 and volatility o.

Therefore, if we apply Ito’s lemma to G(F) = In(F) we will find in a

similar way an expression for the foward prices:

Property 32. If the spot prices follow a Geometric Brownian Motion
with drift @ and volatility o, then the forward prices in future time periode
T are described by the following distribution:

1
In(Fr) ~ N (ln(Fo) + <,u —r— 20'2> T; 0\/T>
So we can compute probabilities that the forward price is lower than ....

6.6.6 The Black-Scholes model.

It is good to read section first.
We have seen that:

e The stock price is usually modelled as a Geometric Brownian Motion with
drift p and volatility o, these parameters can be estimated from historical
d

data, i.e. ?S = pdt + odz;

e In the previous chapters we also have seen that prices of derivatives can
be found as a function of the underlying, so if the underlying is a share of
a stock, then the price of the derivative is a function of S, let’s say G(S),

e So the price of a derivative is a function G(S5) of S and with Ito’s lemma
we found that (note that a(S,t) = pS,b(S,t) = ¢S and z is S)

oG 0G 10°G 2 a2 oG
dG = (&S'MS+875+28520 S ) dt + %USdZ

This equation describibes the evolution of the price of a derivative.
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We know that in the above formulas, the ”uncertainty” is in the parts with
odz, this is why we put them in red color.

Moreover, we already have talked about a ”risk neutral world” where prob-
abilities are in ”other units”, and we know that, when working with stochastic
processes, the probabilities are in the term odz = o - eV/dt, where € ~ N(0,1).

Remember form the Binomial option model that we ”entered” this risk free
world by finding ”a replicating portfolio” that excluded risk. We also saw that
this replicating portfolio was built up of A (a number here) shares of the stock,
combined with a European call (and this we did because that was the way we
found a price of a forward).

We will now do exactly the same, only this A will be a bit more complicated
because we have to re-compute and re-compose it in every dt interval. So it will
be changing ”instantauously”. How do we do this ?

Well, above we found that the option price is described as:

d
?S = pdt + odz

while the price of any derivative is a function G(5) that evolves as:

%MS + E + 5@0’252 dt + %O'Sdz

We want to go to a "risk neutral” situation so we would like to get rid of
the uncertainty. So if we multiply the first equation by g—g and then subtract if
from the second one, then the dz will disappear in the result !! So there is no
dz or no uncertainty anymore.

Multilpying the first equation by % means that we compute for % shares
of stock and if we buy that then we have to borrow the money %S to buy the
shares. At the same time we short a derivative that matures at dt.So the value
of our portfolio is IT = —G(S) + 9 5.

The change in value of the portfolio is dIl = dG — %ds . If we substitute
the expressions of dG and dS that we have found supra then this is:

1 2 0G
dG — <6G 0G 0°G ) 0G

oG
dll = fdG+%dS
G . 9G 10°G .,

+
G~ 9G 190G , .,

0G  10°G .,
= _(at+2552‘78)dt

%Jr %(uSdt + o5d7)
O s

As expected there is no uncertainty (dz) anymore, so by hedging we found
a portfolio that no longer contains uncertainty and because of the arbitrage
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argument (as for the Binomial model) this shoud have a return equal to the risk
free interest rate, i.e. dII should be rIldt:
So we find

It follows that:

Property 33. If the price of the underlying stock follows a Geometric Brownian
Motion with drift p and volatility o i.e. % = pdt 4+ odz then the price of a
derivative G(s) must be a solution to the differential equation:

oG oG 10*°G
%7‘54— E + 5@0’252 =rG
This is the Black-Scholes differential equation, all derivatives have a price
G(S) that must be a solution of that equation. The underlying uncertainty is
not in the equation because we contructed a portfolio such that the amout of
stock and the derivative have the same uncertainty, so the underlying source of
uncertainty is the same, it is eliminated by constantly re-composing the portfolio.
Note that the risk free rate was assumed to be constant !

Remark 6.6. Several important remarks must be made here:

e Note that the drift of the stock price is u, but the (Parabolic - because of
order 2) Differential Equation (PDE) does not contain p ! It only contains
r, because of the risk neutrality !

There is no random component dz neither !!

e note that the number of shares A in the Binomial trees has mo become
0G/0S with changes every dt because S(t) ! (note this, later we will talk
about delta of portfolio)

e This is because we “eliminated” the uncertainty dz;

e [t is a second order differential equation, so we will need two ”side condi-
tions” to solve it, one is the value of the derivative today, the other one is
the value at the maturity.
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[[this is explained below, so don’t worry too much:]]
Feynman-Kac showed how to solve a differential equation of the form:

of 2 _

Subject to a final (i.e. at T') condition that f(S,t =T) = g(S) is given by:

af 1 o0 f

F(8,1) = e TIER (g(Sr|s,=5))
Where S(¢) is the solution of the process
dS? = a(S,t)dt + b(S,t)dz?

The superscript Q means that we have changed the measure of the probabilities
!

We will explain what Feynman-Kac says, using our own ”problem” i.e. the
Black-Scholes differential equation:

e We can see that the Black-Scholes differential equation is of the same
shape as the one mentioned by Feynman-Kac:

— G(S,t) plays the role of f(S,t), G(S,t) is the price of a derivative (a
forward or an option) and we know that it is dependent on the price
of the underlying stock (whose price is modelled as dS/S = udt+odz)
and on the timepoint where we compute it;

— 15 plays the role of a(S,T), oS the one of b(S,t);

— Feynman-Kac say that we need to know f(S,¢) at t = T as a function

of S (which is Sy at t = T), and we call that g(S), this no longer
depends on T because we set t = T'. Translating this to our setting,
we need to know G(S,t) at t = T and call that g(S). Now, G(S,t)
is the price of a derivative and we have to know it at ¢t = T. Let’s
take a call option as an example; we know that at ¢t = T the price is
max (St — K,0) and this is g(5), so g(S) = maz(S — K, 0);
In other words, ¢(S5)|s, is the distribution of the price of the call
option at T, given that the spot price today is Sy , this is illustrated
in the graphs further on, the price paths start at Sp and end up at T’
in different values because of the random component dz. This gives
the distribution of S at 7" and with that you get the distribution of
the call option prices at T'.

— and then Feynman-Kac says that G(S,t), the price of the call option
at t can be found as G(S,t) = e "T=YEQ(g(Sr)|s,~s5), where S(t)
is the solution of dSQ = rSdt +cSdz“. This is complicated but after
explanation it will become clear. Note first that the superscript Q
is used to make a distinction between the equation that Feynman-
Kac talk about and the stochastic model of our stock price dS =
wSdt + odz.
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Nevertheless, it is the same S, so dS@ = dS but ... measured with
other, risk neutral, probabilities. That is why u has become r: in a
risk neutral world there is no ”premium” on top of the riskless rate
r. Note that this is on fact the same world, only that we measure
probabilities in different units !

But, applying Ito’s lemma to d(In(S)) we found (see property
that, if dS = rSdt+0S5dz2, then In(St) ~ N(In(So)+(r—%)T;ov/T)
in other words, In(St) = In(Sy) + (r — %Z)T + o+/Tde or

Sy = Soe(r— %)T-F(T\/Tde

Feynman-Kac says that G(S,t), the price of the call option can be
found as G(S,t) = e "T"VEQ(g(Sr)|s,—s), where S(t) is the so-
lution of dSQ = rSdt + 0Sdz% andzwe find that the solution of
dSQ = rSdt + 0SdzQ is Sy = Sge(r—%F)T+oVTde

So using Feynman-Kac we find that the price of the derivative that we

are looking for G(S,t) can be found as : G(S,t) = e " T=YEQ(g(S7)|s,=5)
We have already found above that g(S) = maz(S—K,0) and with the
above expression for the stock price S we have g(St)|s,= maz(Spe™~
K,0)

Therefore we can find the price of the call option|E| as (the ’|” reads
as 7given that”):

)T 4o/ Tde_

— Q r(T—0)
G(SOat) - E ( g(ST)|St:SO ) €
N — N———
value of the ca istribution of option price at T,
. 1 f th 11 distributi f i i T
(with maturity at T) today given that stock price todat is So

Expected (risk neutral) value of option price at T ...

discounted value of expected value of ...

where g(St) = mcwz:(Soe(r_§)T““7‘/ﬁl€ — K, 0) is the distribution of
the price of the call at T.

This was all technical stuff, but let us now look at what this means,
because it looks very complex but it is very similar to what we had
with the Binomial trees !!!!

EQ(g(S7)|s,=s,) is an expected value, so for a continuous distribution
this is an integral (see statistics summary). If you look at g(St)
above, you can see that is it is the price of the option at ¢t = T, but
there is one strange element, de which we know is NOT a differential
but a standard normal distribution !!!

15This also works for a forward, but with a simpler formula.
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So g(Sr) is the distribution of all the possible values for St at t = T.

This is similar to the Binomial tree: we had all the values of St at ¢t = T and
for each value we had the probability. After that we took the expected value as
>, piz; where the probabilities p; are measured in the risk neutral world !

So E? is just taking the expected value of all the possible values for Sr at
t = T in the future, using probabilities that are measured with the risk neutral
measure Q. This mesure is defined by dz? which is a standard normal variable
with density ¢(x) = \/127
So what we have to do is take the expected value of all the possible values of
St at t = T using the probabilities given by ¢(z), and this is very similar to
what we did with the Binomial trees !

so we find that

1
e2®",

+oo
E2(g(S1)]5,250) = / o(St)p(e)de

— 00

where g(St)|s,=5,= max(S(ye(T_é)T""T‘/ﬂl6 - K,0)
And then we have to discount this value.

It is good to get a feeling about what is happening. We know that the stock
price evolves according to a Geometric Brownian motion as shown in the figure
below. We know that each of these paths betwen t = 0 and ¢t = T are possible
and that many more of these paths are possible.

So, between t = 0 where we know the value of the spot price and ¢t = T where
many values are possible, there are an infinite number of paths between [0, T
that lead to an infinite number of values for S at ¢ = T, Note that at ¢t = T
we have MULTIPLE VALUES that are possible, as can be seen in these four
examples at the right side of the graphs (the values of St are in the title of the
subgraph)

So what we are doing is, for a possible value of S at T (and there are many
values possible) we just try to find the probability to end in that particluar
value and this can be done by counting how many percent of all the (infinitely)
possible paths end in that one value that is what the integral does for us and
that is what the Binomial probabilities did in the Binomial tree model !

When we have the distribution of the spot price St at t = T then we can find
the distribution of the price of the call option at T' using the function g().

So this method can also be used to compute the integral by Monte-Carlo
simulation; use a computer to generate an high number of such paths and take,
for each path, the value spot Sy at T'. This gives many values for S7 and thus
the simulated distribution of the spot at T'.

Each of these wvalues of the spot can then be wused to
compute  a value for the call and in that way we get the
simulated distribution of the call option prices at 7' (this is ¢(S5)|s,). The
average of all these simulated values for the call price obtained at T is an

approximation for E2(g(Sr)|s,=s,). The more paths you simulated the better
the approximation.
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Write expectation as an integral: The expected value is an integral (see
summary on statistics) and we know that for a European Call it holds
that G(S) = max(St — K,0), so we find that:

+oo )
EQ(Q(ST”St:So) — / (max (O7 Soe(T—U /Q)T-‘raﬁs _ K)) QD(G)dE
— 00
Split the integration interval: Note that max (0, Soe(r"’Q/Q)T“’\/TE - K)
is zero when K > Soe(’"_‘fz/g)T“‘"ﬁe, or e?VTe < K/Soe_(T'_”z/Q)T or, af-
< In(K/So)—(r—o?/2)T
>~ O'\/T
0 we find: maz (07506(7"702/2)T+J\/T6 _ K) —0 e < ln(K/So)*\/(%*tﬁ/Q)T
and otherwise it is Spe(r—0"/2T+oVTe _ ¢

Subsituting this in the integral above we find:

ter taking 'In’,; €

E®(G(Sr)) = /60 0p(e)de

— 00

+o0 5
+ / (Soe(’”*" /)T+oVTe _ K) o(e)de

€0

+oo

€0

In(K/So)—(r— 02/2)T
oVT

Split the remaining integral: Let us look at the integral:

f+oo (S elr— 0?/2)T+oVTe _ K) QD(E)dG _ f;—oo SOG(T_UZ/Q)T—HT\/TEQO(E)CZE_

where €5 <

€0

+o0 +oo
JI% Kp(e)de = SO/ e(r=o* IDT+oVTe ) de fK/ @(e)de = Sl —
€0

€0

12 Il

K1,
Now [; = f;:oo (€)de where p(e) is P(z > €y) where z is standard normal.
Because of the symmetry of the Gauss curve we have P(z > ¢y) = P(z <
—¢0) and this is N(—¢p) where N is the cumulative density of the standard
normal.

+oo (r—o? oVTe r—o? +oo o Te
I, = feo el /2)T+oVT o(e )dgfﬂf VT o(e)de.

no €

We know that ¢(z) = —=e3% | therefore f:oroo e"VTep(€)de = f+o° eoVTe L e3¢ de =

+ var
© e° Tet+ie?
\/ﬁf VTetie e
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so I, = e(r—02/2)T 1 f+°° €Uﬁ€+%62d€

V2r Jeo
Note that ov/Te+3€? = —1(e—oVT)?+40?T. or I, = e(r_”2/2)T\/% fe—soo e=2(e=oVT)+30°T g —
+oo
6(7"—0'2/2)T e%GZT 1 e—%(e—oﬁ)zde

V27 Je,
no €

P(X>eq),with X~N(oV/T;1)
Further, if X ~ N(ov/T;1) then X — ov/T ~ N(0,1) and P(X > ¢) =
P(z=X —ovVT > ¢y — o/T), where z ~ N(0,1).
So we need P(z > ¢y — 0v/T) and by because the normal distribution

is symmetric this is the same as P(z < —ep + 0/T) which, if N is the
cumulative distributin of z is N(—eq + ov/T)

So I = el T TN ( gy 4 0v/T) = TN (~co + oVT)
Put it all together: G(S,t) = (So-Io — K -I;)e (T~

where I = N(—e¢p) and Iy = N(—eg+ovVT)e'" and ¢g = “L(K/S‘er_\/(%_oz/z)T

So G(S,t) = (So-N(—eg+0VT)e'T —K-N(—€p))e " T=0) = Sy N(—ey+
2
O’\/T) _K. N(_eo)efr(Tfo) where €0 = In(K/So)—(r—oc°/2)T

oV'T
to find the formula of Black and Scholes we have to write put dy =
2 2 2
e to /T _ _ln(K/SOL—\/(%—o' /2)T +o /T _ —In(K/So)+(r—oc°/2)T+c°T _

ovT
In(S/K)+(r+o?/2)T
oVT
if di = —eg + oV/T then —ey = —ov/T + dy and we call this do
so we find

Remark 6.7. Note that , looking the reasoning in the proof, the price of
a forward is a special case where g = —00
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Black-(Merton)-Scholes:

ECy = SoN(dy) — Ke " N(dy)

EPy = Ke ""'N(—dy) — SoN(—dy)
where

o dy = ln(So/Kl—O:/(%+02/2)T

[ ] d2:d1—o\/T

e N is the cumulative density of a standard normal random variable.
Note that from the proof it follows that

e N(d2) = I; which is the risk neutral probability that the option will be
exercised.

e SoN(dy)e™ is the expected stock price (risk neutral expectation) at T
when stock prices les than the strike price K are counted as zero.

Forward as a special case 7
draw distributions of Fp, S, ECp?

Example: As an example assume the the stock price today is Sy =
20. The voltatility of the stock is o = 0.15.

We want to find today’s value of a call option with maturity 7' =5
and a strike price K = 10.

The risk free interest rate is r =0

Let’s apply the formula that Black-Scholes found; d; = 2.2342707,ds =
1.8988605, N (d1) = 0.9872674, N(d2) = 0.971208(°] We find that
ECy =10.033.

Alternative: Simulate the answer:

We could also find the solution by simulation. For that we have
to find the distriution of the value of the call option at T, i.e.
g(St), ie. g(Sr)|s,=s,= max(Sr — K,0) where we know that
St (a value in the furtue) is a distribution. Indeed, we know that
02

Sy = Spelr=T)T+oVTde _ [} and ¢ ~ N(0,1) is a normal random
variable.

So if we take n = 500,000 random values from a standard normal

distribution , then we can find n values for St (and thus a distri-
bution) and also n values for ECp (thus the distribution of ECT).

16Tn  Excel the function 'NORM.DIST’ can be wused to compute N(z):
'=NORM.DIST(’x’,0,1, TRUE)".
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These are shown in the graph below, ECj are the discounted values
of ECT

These densities are shown in the graph below, on the horizontal azis
you see the different values that might come out as St (left panel
inthe graph) or ECT (right panel in the graph) and on the vertical
azis the percentage of times (probability) that this value occurs. E.g.
for ECp the value 10 occurs around 7pct. of the time as value for
ECt at the time T (in the furture).

If we now compute the average of all these EC values and then dis-
count that average, then we get the simulated value, we find 10.032.
Note that it is very close to the value found with the formula of
Black-Scholes !

BUT THERE IS MORE: with the simulated distribution you can see
that the option can sometimes be worthless (see the density above 0
in the graph of the density of ECr) because of the volatility in the
stock price !

Moreover we have an idea about the spread of the outcome of ECr
and this about the ”precision” of our value ECy !!!

Note that with such distributions you can compute the probability
that St is above ... or that ECr is above ...

5T ECT

10,00 -

10.04 -

density

0.02 -

0.00-
Q 10 20 0 40 [ ] 10 20 30 40 50
value
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7 NEW:Some extensions.

7.1 A special case: options on indexes.

Take care with 5! I don’t see anything in the slides on this, did he talk about
it ? (see Hull 334-335, it is easy)

7.2 A special case: options on continuous dividend paying
stock.

7.2.1 Binomial model.

Very similar, the only difference is the risk neutral probability, see exercise
H1.5.2

If we have a European call option on an underlying stock that pays a conti-
nous dividend yield ¢ i.e. a the dividend is a percentage value of the stock, then
(see ﬁgure the value of the portfolio after one period will be ASyued®t+ Be At
after an upward movement and ASyde?®t + Be™At,

So, with a similar reasoning as after that figure we find two equations:

A-Sy-uel™ 4 B-e"A = EC,
A-Sy-de™™ + B-e"A = EC

So, what your professor has on his slides is top copy the reasoning in figure
and do the same computations but where you replace u by wu - 42t and d
by d - e9?! and then do exactly the same computations. You can do these
computations (see his slides).

It is however much easier to say that v’ = u-e9?t and d’ = d-e?? are the up-
ward/downward increase/decrease and then , in the result of the computations
do the inverse replacement.

/
u

—
A. SO "U,'(’,th +B . eT'At

= EC,
d/
—
A-Sp-de’™ +B-e"? = ECq

We now have exactly the same equations as after figure|8|) except that there
is ' and d’ in stead of v and d, se we have to do the ”inverse subsitutions” to
find again v and d in our formula.

E.g. we found that the risk neutral probability is (with v’ and d’) p =

TAL_ g oaAt

e =d' if we replace v’ and d’ then we find that p = weanr—qeant and after

u'—d

dividing numerator and denominator by e?®* we find

- e(rfq)At —d
p= u—d
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, where u and d are determined as before (see section [6.4))!
So the result is exactly the same as before, execpt that in the exponent of
the risk neutral probability you now have r — ¢ in stead of 7.

So we find that the risk neutral probability is p = Z:g where a = e(r—DAL

rAt

while for a stock without dividends a = e
This is not unexpected, because in a risk neutral world (in which we are when
we use risk neutral probabilities) the total (risk neutral) return should be the
risk free rate. When dividends are paid, the total return is the return from the
portfolio and from the dividends. As the latter are ¢, the former must be r — ¢
for a stock with a continuous dividend yield.

For a stock without dividends ¢ = 0 so a = ¢"?* and we find the value of a the
we found before.

7.2.2 Black and Scholes model.

If we apply in Black and Scholes a similar reasoning then we will find a differ-
ential equation for all derivatives paying dividends:

oG G  10°G , .,
%(7’7(])54’54’5@0 S —T’G

The results are also very similar in this case (as before we change the Euro-
pean call and put notation to ¢ and p):

¢ =ECy = Spe " N(dy) — Ke " N(dy)

p=EPy = Ke " N(—dy) — Soe ‘" N(—d,)

where

o d; = (S /K)+(r—qto®/AT

ovV'T

[] dgzdl—U\/T

7.3 A special case: options on currencies.

7.3.

1 Binomial model.

An option on a currency is like an option on a stock with a continous dividend,
the underlying stock is the curreny and the dividend yield is the interest rate
on that underlyinh currency, so we apply the same trick as for forwards on

cur

encies.

So we find that the risk neutral probability is p = Z—:g where @ = (" Teurrency) At
This is not unexpected, because in a risk neutral world (in which we are when
we use risk neutral probabilities) the total (risk neutral) return should be the
risk free rate. When interests on the currency are paid, the total return is the
return from the portfolio and from the interests on the currency. As the latter
are Teurrencys the former must be r — reyrrency for a stock with a continuous
dividend yield.
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7.3.2 Black and Scholes model.

If we apply in Black and Scholes a similar reasoning then we will find a differ-
ential equation for all derivatives paying dividends:

2
od r—q)S + 96 + 1%0252 =rG
oS

The results are also very similar in this case (as before we change the Euro-
pean call and put notation to ¢ and p):

¢ =ECy = Spe " N(dy) — Ke " N(dy)

p=EPy=Ke ""N(—dy) — Soe "' N(—d;)

where

o d = ln(So/K)J;(;%qwz/?)T

[ ] dgzdl—a\/T

7.4 A special case: options on futures.
7.4.1 Binomial model.

A special case is when in section [6.2] the underlying is a future or a forward.
Assume that at ¢ = 0 the forward price is Fjy. Note that Fj is the price in the
contract that makes the value of the contract zero at ¢ = 0, so in such a contract
the contract price is Fy. In a period At the forward price (in the contracts) may
rise to F,, or decrease to Fy;. What is the value ECy of a call on that future
contract at t =07

We proceed in a similar way: construct a portfolio with (a) a loan B, write
A futures.

e If the price goes up to F,, then we have in t = At A contracts that have a
contract price Fy while the price is now F,,, so the value is (F,, — Fy)A, we
also have a loan, with interest so Be™*. So te value is (F,, — Fy) A+ Be™®;

e If the price goes down to F,; then similarly, the value of the portfolio is
(Fy — Fo)A + Berat

So at t = At this portfolio is equivalent to our call option if in these two
cases these values are resp. £C, and ECjy:

(F, — Fo)A + Be™™t = EC,
(Fjy— Fo)A+ Be™ = ECy

Subtract both equations and you find
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EC, — ECy
A=t 2
Fu_Fd

B=e A (ECu 124 po, = 1)
u—d u—d
Then again, similar as in section [6.2] we have ECy = A x 0+ B, where the
value zero occurs because the value of the call is zero (Fy is the price in the
contract, set such that the value of the contract is zero at t = 0!).
So we find that the value of our call is

1-d -1
EC, = e (po,—2% + B,
u—d u—d

or if we define the risk neutral probability p = 711;7211

Property 34. The value of a call on a future is

ECy = e " (BEC,p+ ECy(1 - p))

futures.

: . iy _ EC.—EC
This call can be hedged by at the same time writing A = FE

7.4.2 Black and Scholes model.

The changes to the formulas of Black and Scholes can be seen by looking at an
option on a future as being an option on an underlying stock with a dividend
rate equal to the risk free rate r. This can be ween if we compare the risk
neutral probbaility above with the one for options on stock with a dividend
yields, indeed, if r = ¢ then e("" DAt = 0 = 1.

So in the Black-Scholes formulas for a stock with a dividend we have to
replace Sy by Fy (because the underlying is the future) and ¢ by 7, these are
know as ”Black’s formulas”, we have:

oG G  10°G ,_,
%(Tfl)s+g+§@0 S —TG

¢ =FECy = Foe "' N(dy) — Ke " N(dy)

p=EPy=Ke ""N(—dy) — Foe "' N(—d)

where

o d; = ln(So/K)t(\;%rwz/z)T

[ ] dgzdl—(f\/T

Note that Fp is the value at the day you compute c.
Black’s model is reasonable for stocks, currencies, indices and commodities,
but not for interests.

102



7.5 Discrete dividends

We have seen the case where the stock yields a continuous dividend that is a
percentage of its value. This is an abtraction of reality because this continous
yield divident does never occur. However, it is a very good approximation for
shares that periodically pay dividends and the share is far from its maturity,
i.e. for a long-life option that periodically pays dividends this works well. .

Now we look at what happens when there is a dividend payout at certain
(but limited number) discrete days. In that case, the valued of the stock before
the dividend payout is S and just after it it is called S, i.e. ex-dividend, because
the value of the stock has decreased because of this dividend payout.

7.5.1 Black-Scholes with discrete dividends.

The stock price today Sy (i.e. when you compute the BS-formula) is used to
pay the dividends at the discrete times later on, so it has two parts:

Riskless part: a part that will be used to pay the dividends (and this is of
course equal to the present value of these dividends that will be paid, i.e.
D* = PV(Dy,Ds,...) = S.i Die"(:i=%)) and when we assume that
the dividends are known then this is riskless;

Obviously we only take dividends into account that are paid before the option matures !

Risky part: This is the "ex dividend part”, the part that remains after paying
the dividends. This is uncertai (risky) because it depends on the stock
price in the future time.

So = Sex + D*

The Black Scholes formula may only be applied at the risky part S, =
So + D* . We also must take the volatility of S., into account in stead of the
volatility of Sy because in Sy there is a "non-volatile” part D* !

So in the Black-Scholes formula you replace:

.SO_>SO_D*:SO—PV(D17D27...)
® 0 — Ocy — US’%
And the Black-Scholes formula for options with discrete dividends becomes:

c=FECy=(Sy— DX)N<d1) — Ke_T.TN(dQ)

p=EPy=Ke "'N(—~dy) — (So — D*)N(—d,)
where

o d = ln((SofD*)C/fI\;)f-&-(r-i-UQﬂ)T
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o dy=dy — 0., NT

e D* = PV(Dy,Dy,...) = 31" Diem"(ti=t))  Only D; that occur during
the life time of the option are taken into account !
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7.5.2 Binomial model with discrete dividends.

The dividend is a percentage ¢ of the stock price: In this case the stock
price tree looks like this (dividend paid between At and 2At):

Ex-dividend date

Ex-dividend date

The procedure is similar to the Binomial-tree procedure without divdends, but
you have to use the above tree for the stock prices !

The dividend is a dollar amount: This case is a bit more complex because
of the following fact: note that in all the trees, the "arrows” in the next
step come together, this is because we always have d = 71” such that
u-d=1.

If, in the third level of the tree above we have a dollar amount D for the
dividend then we have a tree like (note that, see supra d = 1/u):
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(So -u?—D)d = Spu?d — D -d =
(So—D)u = —D-u

So - d*~D

And the arraow at the next step do no longer connect.

as a consequence the number of nodes in the tree increases and the algorithm
becomes much more complex !

An alternative procedure should be used, similar to what was done for Black-
Scholes with discrete dividends:

e Start the tree with S5 = Sy — D*, where D* is the present value of all the
dividends (that are paid before maturity of the option)

o Build the tree "as usual”, but with Sj at the start;
e Add D* to the stock prices before the ex-dividend date
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7.6 American options.

An American call (long) without dividends will never be exercised early (see the
section on Model independent properties of options).

An American call (long) without dividends may be exercised early but only
just before the dividend payment day (names ”just before ex-day”).

An American put (long) can be exercised early (see the section on Model
independent properties of options), it must be computed , for examples see
exercises !

7.7 Warrants

Warrants are a special kind of options. They are not traded on an exchange.
Mostly a company that issues a bind attaches warrants to the bind in order to
make the bond more attractive. A warrant is namely an option on a number of
shares of the company that issues the warrant.

Let us analyse a warrant that gives the right to buy g shares of the company
(so it is similar to a call). Ans assume that the company issues M such warrants
at an exercise price K.

When the warrants are exercised the company will create additional shares
to fulfill the obligations in the warrant, so, if all warrants are exceuted, M X g
shares will be issued and an amount M x K.

So if the value of the company at the moment the warrant is executed is V(T')
and at that moment is has IV shares. Then after the warrant being exercised,
there will be N shares M - g new shares and the value of the company will be
V(T)+ M - K. So the price per share P, ficr = V(I)+M-K

N+M-g

V(T)+M-K-g

So the call has a value per share: max( — K,0) , similar to a

N+M-g
long call position.
We manipulate this a bit:
VI)+ M -K-g
Pitter = - K
fter N+Mg
V() +M-K-g—K(N+M-g)
B N+M-g
_ V(T)-K-N)
B N+M-g
N
= ——(V(I)/N - K
T (VN — K)

Each warrants gives you the right to receive g stocks.

So the for g warrants the value of the call is g x max(w - K,0)=

N+Myg
Ngf]\]/[vamam(V(T)/N - K,0)
This looks like the formula for Ngf]\g.g calls on V(T)/N with an exercise

price K. Where K is the exercise price in the warrant.
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At any time, so even when the warrants are not exercised, the value of the
company is V=N -S+ M - W, where W is the value of the warrant and .S the
price of one share, because there are IV shares and M warrants.

So V/N =8 + Mw.

Now we can compute the value of the warrant, being a call option on V/N,
using black and scholes where we replace S — S + %W7 0S5 — 08, warrant and
multiply the formula by Ngfﬂjj_

Then this formula has to be solved for W using numerical techniques.

7.8 The Greeks.
7.8.1 Illustration of hedging.

Assume that a financial institution has sold (i.e. short position) a call option,
then, see the payoff diagram of a short call, the financial institution may risk
a very big loss if the spot price at maturity T significantly exceeds the strike
price in the option. This loss is even unbounded ! (see payoff).

Therefore the financial institution may wish to ”eiminate” this risk, i.e.
hedge the position of this short call. Un unhedged position is also called a
naked position.

It could also take in a covered position by buying the same amount of stock
as is in the contract. This works well if the option is exercised, but in the other
case this may also lead to large losses.

So how can we hedge our risk ?

7.8.2 Delta hedging.

When we determined the value of an option, we constructed a replicating port-
folio, consisting of A stocks and one call option. This A was chosen such that,
whatever was the change in the price of the underlying asset, the portfolio had
the same value, in other words, A was the amount of underlying stock that
could compensate for the risk of the call option. It was chosen such that the
value of the call combined with A stocks

Definition 23. The Delta of a derivative is the change in value of the derivative
for a unit change in value of the underlying stock: A = ‘g—g.

If I have a portfolio of derivatives all with the same underlying asset, e.g.
a quantity wi of derivative 1, wy of derivative 2, ..., then the value of the
portfolio is Il = w Fy + woFy + - -+ + wy, Fy,, so if we take the derivative we find
thatA:w1%+--~+wn%LS = w1 Al + wAg + - +wr, Ay,

If you graph the value as a function of S, then the A is the slope of the
tangent in the point that represents the current situation.

Property 35. We have already seen that the A of a forward is equal to 1.Be-
cause of this, a forward is "in terms of A-hedging equal to stock”. Indeed, A
tells you how much stock (or forwards) you need to hedge a derivative position.
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If you look at the formula of Black-Scholes for a European Call without
dividends, then A = g—g = N(d1), and for a European put A = g—g = N(—d;)

When we proved the equality of forward and futures prices (in the contract)
we have seen that the delta of a future is A = €™, If r is small and At is
small then this is very close to one, Because of this, a future is "in terms of
A-hedging almost equal to stock”.

Remark 7.1. Note that for some derivatives (e.g. a forward) the A is constant
and does not change in time, so you can define the hedge at the beginning of the
contract and then keep it. This hedging strategy is called "hedge and forget” or
"static hedging”.

In other cases (call and put option (note that di depends on o, on S), future)
the hedge has to be adapted every day, this is called a ”dynamic hedge”.

Also see his slide 39

Ezample 7.1. Use of A-hedging A financial institution has shorted 20 calls (each
call has a quantity of 100). It is given that the A of this call is 0.52.

How can you hedge this 7

For each shorted stock (100 per call) you can hedge it by bying A = 0.52
underlying stocks. So to hegde the 20 calls you need 20 x 100 x 0.52 = 1040
units of stock .

Doing this, the A of the portfolio is 20 x 100 x 0.52 — 1040 x 1 (the delta
of a stock is 1 of course). So A-hedging makes the A of your portfolio equal to
Zero.

7.8.3 Gamma hedging, Theta hedging.

Definition 24. We have seen that the A of a prtfolio can change, and this
leads to "dynamic delta hedging”. The T' of the portfolio (or derivative) is the

change of A with S, i.e. T' = % - gzgl

Note that T' has to do with the concavity/convezity of the value of II (see
slide 45)

Definition 25. The @ of the portfolio (or derivative) is the change of its value
with time t, i.e. © =

Note that (Taylor), for the value of a portfolio we have

o1l o1l 10°10, , 1071 1 9%
AH7%A5+§At+2852AS JriWA +§MASA15+...
If our portfolio is ”delta-hedged” then =0, so we find

0 @ r

8H 61'[ 10210 10%1 1 021
All= — AS+ — At+-———AS?+ At + = ASAt+ ...

95 ar ~' 2050 2o~ T 2a5a m T
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If we take very small At then we can forget the second order terms in At,
SO

AIl = OAt + TAS?

for a A-hedged portfolio.
Substituting these definitions in the Balck-Scholes differential equation we
see that the condition for risk-neutrality is

1
@+T'S'A+§'U2'SQ'F:T-F

See slides 46-54
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8 NEW:Value at Risk (VaR)

We have to do this TOGETHER to make it complete
look at his slides after reading this section

8.1 Definition of VaR

Value at Risk is a measure of market risk. So if you own bonds, securities,
equity, ... then their prices can change from day to day. Hopefully they rise
and then you have a profit, but sometimes prices decrease and then you incur
losses. Value at Risk is a measure of how much your loss may be in exceptional
cases, so it tells you how bad things can go.

Definition 26. The value at Risk (VaR) is a measure of market risk, it is
an_amount that you can lose over a given time period and with a given confidence
level.

So VaR has two parameters; the length of the time period and the confidence
level. The length of the time period is typically one day or ten days. The
confidence level is typically between 95% and 99%.

Let’s take an example and compute the VaR for a time period of one day
and a confidence interval of 99%, so we want to find the amount that we can
lose in one day with a confidence level of 99%. In order to find this, we will
need the distribution of the losses of our portfolio, this means that we need, for
each possibe value of the loss in one day (note that a profit is a negative loss)
the probability of occurrence of the loss, which is the loss distribution.

Let us assume that this loss distribution looks like in the figure below. So
on the horizintal axis we have the possible values for the loss, and vertically we
have the density of the losses (e.g. a histogram):

w(Loss)

0.99 0.0

VaR Loss

From the picture we can see what is meant by VaR for one day and a
confidence level of 99%: It is the value of the one-day loss that is not exceeded
in 99% of the cases, or the value of the one-day loss that is exceeded in 1% of
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the cases. In formulas we define VaR as the value of the one-day loss for which
it holds that P(Loss < VaR) = 99%.

Remark 8.1. Note that VaR is an amount (in euro) !

Remark 8.2. Note that the loss can be higher than VaR, every value above
VaR s a loss higher than VaR.

This is sometimes seen as a disadvantage of VaR, we do not know the mazx-
tmum loss and if the right tail of the distribution is fat than there could be a
reasonable chance that the loss is higher than VaR (an example on slide 13).

Because of this other meaures were invented, one often, used is the "expected shortfall”.
It is similar to VaR but it does not only take the ”border value” into account,
but the expected value (=the mean) of all the losses in the left tail of the profit
distribution. So it takes into account all profits smaller than VaR (taking into
account their tail probability).

Remark 8.3. Note that a negative profit is a loss and vice versa, so profit=-
Loss | The graphs in the slides of FRM are not the loss distribution but the
distribution of the profits. The profit distribution is the mirror of the loss dis-
tribution (when the mean is zero, which is usaually assumed in VaR). This is
shown below; in this case the VaR is the value of the profit that will be exceeded
in 99% of the cases, in formula form: VaR is the value of the profit for which
P(profit > VaR) = 99%.

p(profit)

.01 0.99
VaR profit

8.2 Example for a normal profit distribution.

If the distribution of the profits is normal then we can easily compute the values
of VaR using a table or with a calculator. Assume that we want to compute the
VaR over a one-day period and assume that the profit distribution is a normal
distrubtion. In VaR calculation it is reasonable to assume that the mean is zero,
and the standard deviation we have to estimate from data (see later).

So the profits of our portfolio are then profit ~ N(u = 0,0 = sp), where sp
is an estimate of the standard deviation of our losses. Note that sp is a money
amount !
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From the normal distribution we know:

P(profit < —2.3263479 x sp) = 0.01

e P(profit < —1.959964 x sp) = 0.025

e P(profit < —1.6448536 x sp) = 0.05
P

profit < —1.2815516 x sp) = 0.1

So, as an example, in this case the VaR for one-day horizon and with 99%
confidence is —2.3263479 x sp.

Note however that a normal distribution is only an assumption and it does
not hold in reality because the normal distribuion has thin tails, while the profit
distribution may have fat tails (see slide 13)

Look at the example on slide 10 !

8.3 Finding the loss distribution.

From this definition if follows that, if we know the loss distribution, we can
compute the VaR. The problem is of course to find that loss-distribution.
There are three ways to get an ”estimate” of the loss distribution:

e Historical VaR; uses the historical price changes to find the profit (loss)
distribution;

So its characteriscs are:

— uses data from the past and assumes the future will be like the past;
— no theoretical distribution is assumed
— does not assume a linear link between the change in value and a
change in the risk factor
e The variance-covariance method; is based on the assumption that the
assets in our portfolio follow a multi-variate normal distribution.

So its characteriscs are:

— uses data from the past and assumes the future will be like the past;
— a normal distribution is assumed
— assumes a linear link between the change in value and a change in

the risk factor

e Monte Carlo simulations; one choses an appropriate theoretical distribu-
tion (that can be more complex than normal) and randomly generates
scenarios.

So its characteriscs are:

— uses data from the past and assumes the future will be like the past;
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— a theoretical distribution is assumed, it can be another distribution
than normal

— does not assume a linear link between the change in value and a
change in the risk factor

8.3.1 Main idea behind VaR estimation.

We have a portfolio that contains different types of assets (e.g. bonds, shares of
equity, options, ...) let’s say Ay, Aa, ..., A, are the values of these assets.

Of each asset our portfolio contains a certain quantity, let’s call these quan-
tities the weights w1y, wo, ... w,.

So the value of our portfolio is (we use a time argument because the quan-
tities change in time)

Vp(t) = wy(t)A1(t) + wa(t) A2(t) + - - - + wn (1) An(t)

We could go one step further and define "underlying risk factors”, e.g. the
price of a bond depends on the interest rate, ... so the price of an asset depends
in these factors Fi, Fs, ... F,, ie. A;(t) = f(Fi1, Fo, ..., Fy), where the F; also
depend on thime. So indirectly our portfolio vaue depends (is a function of) on
these risk factors (one of the Fs could be interest rate) !

Vp(t) = ¢(Fi(t), Fo(t) ..., Fu(t))

If the function ¢ simplifies to a linear function then we say that ”linearity is
assumed”:

Vp(t) = Olel(t) + OéQFQ(t) + -4 anFn(t))

8.3.2 Historical VaR

We work with the formula Vp(t) = w1 (t)A1(t) + wa(t) Aa(t) + - - - + wp (t) An(2),
so with the asset values and with the quatities of each asset.

You need data on e.g. 501 one-day losses for each asset.

With this you can compute 500 growth rates from one dat to the next.

Apply these 500 growth rates to the most recent values and compute Vp for
each of the 500 results.

Make a histogram of these 500 Vp

Take (for 99% VaR for one-day horizon) the fith worst value. (1% of 500 is
5)

The method also works for the formula Vp(t) = a1 Fi(t) + asFa(t) + -+ +
o, Fy, (1)) when you have historical data on the F).
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8.3.3 Variance-covariance

Here we work with the formula Vp(t) = a1 F1 (t) + agFa(t) + - - + a, Fih (1)), so
with the underlying risk factors.

Note that linearity is assumed. Moreover it is assumed that all factors F}
are multivariate normal, so normality is assumed. You also need to know all
the (linear) links between each assets and the factors Fj.

The you estimate the var-covar matrix of the factors. If the F}; are multi-
variate normal and you have the var-covar matrix, then you can compute the
distribution of Vp(t) = a1 Fi(t) + asFa(t) + -+ + ap F(t)) and thus find the
VaR.

In the linear case Vp has a normal distribution and its standard deviation
can be computed form the var-covar matrix and the a’s, so you can apply the
“normal distribution case” supra.

8.3.4 Monte-carlo simulation

Similar to the previous but you assume other distributions and then simulate
from these. Then you get (simulated) values for the Fs. With this you can
compute Vp even for the more complicated ¢ !

8.4 VaR backtesting.

When you compute the VaR, you make a lot of assumptions; that the past will
extend to the future, about the distribution, about the functional link between
the loss and the risk factors, ... So what you find as VaR will depend on whether
these assumtpions are fulfilled in the real world.

So what you typically do is to compute the VaR and after that, with other
data, you check whether on this new data the loss is lower than VaR computed
in x% of the cases.

You should never use a VaR that has not been backtested !

8.5 VaR and Basel
9 Credit Risk

10 NEW:Case studies

10.1 Forward rate agreement. Exam question Q3.

PNC has hedged (in the past apparently) its interest rate expsoure, that was a
floating rate on an amount of 100 mio EUR. They used an FRA for this. When
the floatig rate was created (in the past) the fixed rate was 3%. This means
that at ¢ = 0 (somewhere in the past) the fixed rate of 3% made the initial value
of ths FRA zero (see section on FRA).
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What does this hedge mean 7 Well PNC knew that it would need a loan
between 1/4/2010 and 30/6/2010 and, because this is in the future, it can’t
know the (floating) rate at the initiation of the FRA (note that an FRA is a
swap with just one cash flow !). It does not like this uncertainty and wanted
to find a way to pay a fixed and known rate for that period. So th "to pay
floating rate” for that period was compensated by a "receive floating” (exactly
opposite to the one "to pay”) and "pay fix”. So the FRA pays a fixed rate of
3% (in exchange for the floating rate of x%). Combining its original loan with
this FRA results in a fixed rate payment because the "to pay float” and the
"receive float in the FAR” net to zero !

The creation was in the past and today we are at ¢t = to = 31/12/2009.
Because the expected rates for the period 1/4/2010-30/06/2010 have chenged
compared to those at creation, the FRA’s value may be different from zero at
to !

So we want to compute the value of a (pay fix) FRA at to = 31/12/2009 for a
loan over the period ¢ = 1/4/2010 = ¢, +3/12 to t3 = 30/06/2010 = ¢, +6/12.

It is said that compounding is simple and we don’t have to care about
daycount conventions, i.e. it is 30/360.

| | |
to to+3/12  to+6/12

In the section on FRA we saw the formula for the value of the FRA.

V= L(ftt;+3/127t0+6/12 — Ryra)(to +6/12 — (to + 3/12))DF (to, to + 6/12)

We use simple compounding, therefore DF(tg, to+6/12) = T +6/121(t0+6/127t0)
0-t0

So
1
V = L(ff — Rty 6/12 — 46— 3/12
(fig+3/12,8016/12 fra) (46 +6/ =3/ ))1+Rt0,t0+6/12(%+6/127t6)
100 mio EUR 3.00%
=~ t A~ 1
= L (ft(())+3/12,tg+6/12 — Ryra)(3/12))

L+ Ry tov6/12 (6/12)
—_————

see table,3.00%

So if we find ff§+3/127t0+6/12 then we just have to put the numbers in the
calculator !

We can find this forward rate using the schema in figure [I} but we have to
use simple compounding, so we have

(LR o +3/12(0+3/1240)) (14,0 5 119 1 4 6/12(F0+6/12—(t0+3/12))) = (14 Ry 11.6/12(to+6/12~10))

so we find
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see table,3.00%

——
f ) 1= 1 (]. + Rtg,t0+6/12 (6/12))
to+3/12,80+6/ (6/12—3/12) | (1+ Ryg1o18/12 (3/12))

see table,2.50%

With all this we can compute f; 13/124,+6/12 and with that we can (see
supra) compute V.
Part b) is still TO DO
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10.2 Binomial coefficients (Pascal’s triangle).

If you have to compute the Binomial probabilities (Z) then you can use the
so-called triangle of Pascal. At the outer nodes you always have '1’ and in each
node you just sum up the values of the nodes that arrive in that node. So

e.g. (f) = 2 because the two arrows that arrive in (f) have values 1 and 1, so

@) =1+ 1. Similarly, (g) =3+3
So you compute the tree by starting at the left.
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11 Exercises.

11.1 Bonds and interest rates.
11.1.1 Q1.1

An investor receives 5616 in 3y, in return for an investment of 5400 today,
compute percentage per annum with.

e Annual compounting: We should apply the formula [1] for discrete com-
pounding, with m = 1, Ny = 5400, Ng4+3 = 5616 and At = 3 and solve
for Rég:

(1) 1x3
RO T
5616 = 5400 <1 + 1)

3/ 0616
—— — 1 =0.0131594
5100 0.013159

e semi-annual; use m = 2 and you get

If follows that R}

5616 = 5400(1 + R{’) /2)%<3

¢/ 9616

If follows that Ry’) = 21/ =

—1=0.0131164
an 1
o monthly, take m = 12 and you get Ry, =12 % % — 1 =0.0130807

5616
o daily, take m = 365 and you get Ry>”) = 365 >/ i~ L = 00130738

e For continuous compounding you apply the formula [I|for continuous com-
pounding.
We have to solve the following equation for Rf ,:

5616 = 5400¢0.= %3
Or R§, = 1/3In(5616/5400) = 0.0130736

11.1.2 Q1.2

Consider following zero coupon rates (ZCR) in annual compounding (AC):
Years ZCR(AC)

5 1,03%
7 1,11%
8 1,26%
10 1,34%
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e Compute the discount factors from these rates: For discount rates we use
the fomulas The rates in the above are with annual compounding, so
m = 1, the At is expressed in years and is found in the first column of the
table.

— DF(0;5)") = m = 0.9500539
— DF(0; 7)) = {y35077gyr = 0-9256381
— DF(0;8)") = (5735 = 0-9046834
— DF(0;10)M) = aroomnm = 0-8753687

e Convert the rates to continuous compounding: Using formula [I] we have
to find Rf ; that gives the same amount as (1 + RE}%)N, so we have to

solve the equation eft.74t = (1 —l—RE}%)At after taking the At-root on both
sides we have

efir = (1+ R))

for Rf; using the values in the first column for 7" and the ones in the
second column for Rgl%

So from the table we find:

_ C

5 =1In(1+0.0103) = 0.0102473
— Rf; =1In(1+0.0111) = 0.0110388
— Rfg =1In(1+0.0126) = 0.0125213
— Rf 1o =In(1+0.0134) = 0.013311
e Compute the discount rates using the continuous compounding formula.

We have to apply formula [2| using the previously found rates with contin-
uous compounding: For example DF(1(0:5) — =0.0102473x5 _ (j 950054,

e Compute the forward rate for the 5-10 period in annual compounding and
continous compounding.

— Annual compounding;:

You don’t have to learn the formulas, just use the schema in figure [T} but using
the appropriate discounting frequency.

m N mT m o\ m-t m N m(T—t)
(14_%) :(14-%) ><(1—|—'ft7‘T) , with m = 1.
BT = (L T+

m

We can take the m-th root and have (1 +
&)(Tft)_

m RT’?T
So (1+ ftW’T)(T*t) = % and therefore:
(14—
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Rm
(14 2o

The exercise aks for annual, so m = 1, we know that t = 5,7 = 10
and Ro,10 = 0.0134, Ry 5 = 0.0103. So f5Y, = 0.0165095

— Continuous compounding:

the appropriate discounting frequency.

You don’t have to learn the formulas, just use the schema in figure |1} but using

eflorT = ot x e/tr(T=1) from which you find that RG T = Rj t+
fEp(T —t), from which it is easy to find f{7p.
£ 10 = LLBLIOL-0.0512366 _ () (163747

s

11.1.3 Q1.3

A bank quotes you an interest rate of 12.98% p.a. with daily compounding.
What is the equivalent rate with

e Continuous compounding: each euro is after one year (1 +0.1298/365)365
euro. The equivalent rate on continuous compounding is Rf, where

efor = (140.1298/365)365 or RS, = In((140.1298/365)%5) = 0.1297769.

e Annual compounding, in two ways: Here we have to find Rég where

(1)
(1+ D2y — (14 0.1298/365)%5 or R{!) = (1 + 0.1298/365)36> — 1 —

0.1385744
&) .
The second way is by solving (1 + %)1 = efo.s | where R, is the value

found supra.
11.1.4 Q1.4

Zero interest rates with continuous compounding are
Maturity (months) RS

3 1.2130%
6 1.5134%
9 1.7896%
12 2.1258%
15 2.5698%
18 3.3569 %
e forward rate second quarter; e1%0,0.250-2516.25,0.50-25 — 76,0505 g f62505 =
R§ 0.50.5— RS 5.250.25
0.0000=10.020029 _ ) 018138.
Similar: f§ 5075 = —eor?T0 f0s05 _ o 09349

Rest in the same way
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e Convert to simple annual compounding: 116,0.250-25 — (14 Ro,0.25 x 0.25)
(At < 1)), or Ry .25 = =1 — (.0121484

R§ .50.5
10,0595 _
0.5

c
£116,0.250-25
0.25

Similar: R o5 = L =0.0151914

11.1.5 Q1.5

Consider the following bond prices with their respective coupon payments.
Maturity Bond price Coupon Coupon payment

3 months 97.50 0 NA

6 months 95 0 NA
1 year 90 0 NA

1.5 years 95 8 paid every six months
2 years 100 12 paid every six months

e Bootstrap the continuously compounded interest rates:
Why don’t we use the formula for At < 0 here 7

The first three have zero coupons and are therefore easy to calculate: for
the firts one; you buy it today at 97.5 and receive the face value of 100 in
3 months, so,

100 = 97.5e%0.0.259-%5 or Rg .o = In(100/97.5)/0.25 = 0.1012712

Similar for the second 100 = 95e%%.0.5%% or R§ o5 = In(100/95)/0.5 =
0.1025866

Third one: 100 = 90e"0.1* or R§; = In(100/90)/1 = 0.1053605

The last two are a bit more complicated because we get intermediate
coupon payments. The coupon is 8 per year, but paid every 6 months ,
so 4 every six months. Therefore the currrent valus of the cash flows for
the fourth is

95 = 4e~F0.0.50-5 L 4e=Fo11 1 104 F0.1.515 where the values of R§ 5 and
R§ 1 have been computed supra. And where Rf; 5 must be found from
that equation.

104e—F6.1.515 — g5 _ 4¢—0-1025866x0.5 _ 4,—0.1053605x1 _ g7 @

So R, 5 = —In(87.6/104)/1.5 = 0.1144066

If you would not have known Rf 5 and R§; then you have to use inter-
polation !

For the last one we have 100 = 6e F0.050% 4 ge=Foal 4 ge= o515 4
106e 022 or 106022 = 100 — 6~ 10,0595 — e~ Foal — g Ho.1.515 We
already found Ro 0.5, Ro1,Ro,1.5 (hence bootstrap)lﬂ

1t follows that 1066_R8»22 — 100—6670'1025866XO'5—6670'1053605—6670'1144066X1'5 —

83.8461538 or RS, = —1/2 x In(83.8461538/106) = 0.1172277

17pootstrap = schoenaantrekker; je met dus eerst die van 6m en een jaar hebben om daarna
die van 1,5 jaar te berekenen, ...
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Consider the following bond prices with their respective coupon payments.
Maturity Bond price Coupon Coupon payment

3 months 97.5310 0 NA

6 months 95.0041 0 NA
9 year 92.4271 0 NA
1 years 94.2980 5 paid every 12 months
2 years 97.2578 10 paid every 12 months

In part a) we looked at t =T, we can do similar but look at ¢t = O:
97.5310 = 100e~ .0/12"%/12 from which you find R 3,

95.0041 = 100e~F0.6/12%6/12 from which you find RS 612

92.4271 = 100e~ F.0/12"%/12 from which you find R4/,

94.2080 = 5~ 2127 12/12 4 100~ o222 2/12 from which you find R 1,
97.2578 = 10e ™ ffo.12/12X12/12 4 10~ Fo,20/12%24/12 4 100~ F0.20/12X24/12 from

which you find R8724/12

11.2 Forwards and futures.
11.2.1 Q2.1

A stock trades a 50 euro , interest is compounded continuously at 1.5% for all
maturities.

e If I enter a forward purchase of that share for delivery in 9 months, what

will be the purchase price at the delivery date ? How much do I pay today
?

If you enter a forward contract than the delivery price, or the price in the
contract is determined as Fy like explained in [2.3.1]

You can learn these formulas by heart, but they are easy to find, the only
thing you must keep in mind is that all profits and costs between [0,T]
must be taken into account.

In this example there are no profits nor costs involved in keeping the stock
froml [0,T], so we borrow Sy = 50 euro, buy the stock at the spot market
(and keep it until T'= 9/12).

N S . EUR/stock EUR/stock RS
It is said that compounding is continuosly so Fj /stock _ Sy [stock o5 1T

where S(?UR/StOCk =50 EUR, R 7 = 0.015 and T' = 9/12, so we find that

FOEUR/stock — 50.565676 EUR/Stock.

e Three months later the share trades at 57 euro and interest rates are
1.75%. What is the fair value of the contract ? Compute this fair value
in two ways:

Here we are not asked for the delivery prince in the contract, but for the
fair value of the contract. We again have to use continuous compounding
so we have to use the formulas @] and
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The formula must applied to ¢t =0 and t = 3/12:

— At t = 0 we use the fair value computed above as the contract price,
ie K = F§ = 50.565676.

— Three months later the fair value of the delivery price should be
F, = S;e"(T=1) where S; = 57,r, = 0.0175,¢t = 0.25,T = 0.75 so
FeEURIstock _ 57 5009384 EUR.

So in the contract the value at T" will be 50.565676 but the fair value of
the stock at T after 3m is 57.5009384, so the value of the itself at T is
6.9352624 and at t = 3m it should be discounted at the rate 1.75%, so the
value is ff = (Ff — F§)e (T~ = 6.8748436

e Repeat the two first questions assuming that you get a dividend of 5 euro
after 2 months.

Fy has to take the dividend after two months into account, i.e. we can
subtract that value from the cost of borrowing the money; because the
cost of borrowing is reduced by the amount earnt on the dividend.

The present value of the dividend payment is i[OO;T] = He~2/12x0.015 _

4.9875156.

Fo = (So — ileroT = 45.521734.

The is no impact on F; because that is after three months and there is

no dividend between the 3th and the 12th month, only after the second
=0

month. So LEL

The rest is similar, so we find f; = 11.8748436

11.2.2 Q2.2

1 euro is worth 1.12 USD. Interest rates (simple annual compounding) are:
Maturity (months) REFYE  RUSP

3 0.25% 1.25%
6 05%  1.5%
9 0.75% 1.75%

e Compute the forward exchange rates for these maturities.

For the procedure to solve the problems with forward exchange rates see

exercise [1.6.11

1. What is the asset 7 What is the currency used for paying ?

— In the second part of the question it is said that @ = 1,000,000
EUR, as @ is the amount of asset, the asset in this exercise is
Asset=1EUR.

— The currency used to pay is the USD.
2. What are r,q ?
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— r is the interest rate on the money that is used to pay, so r =
RUSD

— q is the profit rate in the asset (1IEUR), so ¢ = RPUF

3. What is the compounding frequency ?
In the exercise it is said that this is simple annual accounting. So,

following the same reasoning as for formula 77 we find FtS’USD/ BUR _

GQUSD/EUR 1+RYSP AL
t 1+REUVEAL

4. discount rate for computing f;, compounding frequency and log or
short 7
— To compute f; we need discount rate, it is the rate for the cur-
rency that you use to pay, so RUSD
— The compounding is simple annual compounding

— we buy so we have a long position

USD/EFEUR USD/EUR USD/EUR
JUSPIBUR — (RPSPIBUR _pISDIEUR) 1

So we have to use T+RUSDAL

This would give the following results:

— T =3/12 we find Fy = 1.12 USD/EUR. x {1g(5253/12 or 1.1227983
USD/EUR

— T =6/12 we find Fy = 1.125586 USD/EUR
— For T'=9/12 we find Fy = 1.128353 USD/EUR

I have a forward contract to buy 1 million euro against 1.20 million dollar
for delivery in 2 years from now. The spot rate today is 1.12 USD/EUR.
Assume that the euro and dollar interest rates are 1% and 2% respectively
(continuous compounding). What is the fair value of the foward contract.

Here we are asked for the value of the contract f;, not the value in the
contract. For continuous compounding we have to use the formula [J]

Where Fj is the value in the contract when it was signed, i.e. 1.2 USD/EUR.

For F; we apply the formula ?? so F, = 1.12 x e(0:02-0-00)x2 — 1 1496255
and then, after discounting we find that f; = —0.0551248.

textcolorredThe discount rate is the interest rate for the USD because
when you look at how formula [ was derived you have USD. see at the
end of section [2.6.1]

As @@ = 1000000 have to multiply this by that amount and we find
-55124.8128792
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11.3 Swaps.
11.3.1 Q3.1

Read the overview in section A swap is a contract where you pay a fixed
rate and receive a floating rate or vice versa. The cash flows that result from
this contract are paid periodically and thus the interests are Mot compounded:

The floating rates are unknown (because they are in the future), but as in
other derivatives, initially the fixed rate is determined such that, initially, the
sum of the discounted values of all the cash flows is zero.

This fixed rate is called the swap rate. There is of course a swap rate for
each maturity so we have Sy r for different values of 7. In order to compute
this fixed rate, as just mentioned, we whave to discount, so this swap rate will
also depend on the discounting frequency, so we have S§ . The fixed swap
rate interests are paid periodically, thus tehy are not compounded and these
swap rates can not be udes to compute discount factors.

There are two ways to find this fixed rate, called the swap rate,

Using bond valuation techniques: A property shown in the course is that
the swap rate makes the discounted value of a bond with a fixed rate and
with periodic payments equal to its face value (see section for detail).
We assume annual compounding because of the data in the exercise. Let
us call the unknown swap rate Sy 4 and assule you have a swap where the
face value is F.

Then after one year you pay (pay because it is in the exercise) an interest
rate Sp4 X F' x 1, (X1 because it is over 1 year) discounted this becomes
Sp.a x F x DFM(0,1);

Then after two year you pay an interest rate only on the face value, (so
not on the interest in the first period !) Sp4 X F' X 1, discounted this
becomes Sy 4 x F x DF(1)(0,2);

Then after three year you pay an interest rate only on the face value, (so
not on the interest in the first period !) Sp4 X F' x 1, discounted this
becomes Sy 4 x F x DF(1(0,3);

Then after four year you pay an interest rate only on the face value, (so
not on the interest in the first period !) Sp4 X F' x 1, discounted this
becomes Sy 4 x Fx DF(1)(0,4). After four year you also pay the face value

F, so after discounting to today this is ' x DF(1)(0,4)
The swap rate is the value of Sy 4 that makes the sum of these discounted

values, i.e. the value of the bond at ¢ = 0 equal to its face value (see
section [3.4.4)) or we have to solve the following equation for Sy 4:

F = Fx(So4xDF(0,1)" +8y4x DFY(0,2)
+ Sou x DFW(0,3) + So.4 x DFW(0,4) + DFM(0,4))
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So we find that 1 = S;4(0.9800 4 0.9500 + 0.9250 + 0.8900) + 0.8900 or
So.4 = 0.0293725

Discounting the cash flows: In this method we sum up the difference cash
flows, but in the fixed cash flow we use an unknown value Sp 4

Obviously, the parties in this contract will take into account the interest

rates that are valid at that time. Assume that we know the (annual, dis-
crete) discount factors DF (0, 1) = 0.9800, DF(1)(0,2) = 0.9500, DFM1) (0, 3) =
0.9250, DF(M (0, 4) = 0.8900.

We have cash flows after 1,2,3 and 4 year. We have to find the value of
these cash flows at ¢t = 0.

e After the first year we have

— A fixed flow that we pay, so —Sp 4 X F'x1 (At = 1) and discounted
—Sp.4 x F x DFM(0,1);
— A floating cash flow at an known (today, at t = 0, Ry . are all

known) floating rate R(()ﬂ, this known rate can be derived from

the discount rates as explained in section DFM(0,1) =

1 (1) _ 1 _
7(1+R31,i)“*°> or Ry1 = DFOOT) 1 = 0.0204082

So the floating cash flow is +0.0204082 x F' x 1 and discounted
+0.0204082 x F x DF(1)(0,1)
— So the cash flow after 1 year is —So 4 x F'x DF (1) (0, 1)+0.0204082 x
F x DFM(0,1)
e After the second year we have

— A fixed flow that we pay, so —Sp 4 X F'x1 (At = 1) and discounted
—So.4 x F x DFM(0,2);

— A floating cash flow at an UNKNOWN floating rate f1(’12)’ this un-
known rate can be derived from the discount rates as explained in
section ﬂ or DFM(1,2) =

DF™(0,2)
DFM(0,1)"

. (1) -1
Since DFM(1,2) REMOIPRn

(1)
of {9) = Bz — 1 = 0.0315789

We assume that the floating rate after 1 year will be f1(12)) So
the cash flow that results is +0.0315789 x F' x 1 and discounted
4+0.0315789 x F' x DF1(0,2)

— So the cash flow after 2 year is —So 4 x F'x DF(1)(0,2)+0.0315789 x
F x DF1)(0,2)

e After the third year we have

— A fixed flow that we pay, so —Sp 4 X F'x1 (At = 1) and discounted

—So.4 x F x DFM(0,3);

1 1 _ 1
DF((0,1) DF((1,2) ~ DF1(0,2)

1o DFM (0,1
we have (1+f1(,2))2 b= Wgozg
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— A floating cash flow at an UNKNOWN floating rate fl(lg), this
unknown rate can be derived from the discount rates as explained
. . 1 1 o 1 . . .
in section DFU(0.3) DFU(E3) — DFO03) and in a similar

way we find that f3}) = 25002 _ 1 0.027027

We assume that the floating rate after 1 year will be f2(13) So
the cash flow that results is +0.027027 x F' x 1 and discounted
+0.027027 x F x DF(1)(0,3)
— So the cash flow after 3 year is —Sp 4 x Fx DF(1)(0, 3)4-0.027027 x
F x DF((0,3)
o After the fourth year we have

— A fixed flow that we pay, so —Sp 4 x F'x1 (At = 1) and discounted
—Sp.4 x F' x DFM(0,4);

— A floating cash flow at an UNKNOWN floating rate fé}z, this
unknown rate can be derived from the discount rates as explained
in section DF<11>(0,3) DF<11)(374) = DF<11>(0,3) and in a similar

way we find that f§}]) = BE(04) _ 1 0,0393258

We assume that the floating rate after 1 year will be f2(13) So
the cash flow that results is +0.027027 x F' x 1 and discounted
+0.0393258 x F x DF(1(0,3)

— So the cash flow after 4 year is —Sp 4 x F'x DF () (0,4)+0.0393258 x
F x DF(M(0,3)

Therefore the value of the swap at t = 0 is

So,a X F' x 0.9800 + 0.0204082 x F' x 0.9800
—  Spa x F x0.9500 4 0.0315789 x F' x 0.9500
—  Spa x F x0.9250 4 0.027027 x F' x 0.9250
—  Soa x Fx0.8900 4 0.0393258 x F' x 0.8900

The swap rate that we are looking for is the value for Sy 4 that makes the
present value of these cash flows zero (else there are riskless profits from
arbitrage) So we put V = 0 and solve for Sp 4.

_ 0.0204082x0.9800+0.0315789 x0.9500+0.027027x0.9250+0.0393258 X 0.8900 __
S074 - 0.9800+0.95004-0.9250+0.8900 = 0.0293725

11.3.2 Q3.2

IRS with paid fixed rate 10% p.a. and receive of 3month LIBOR. The
notional is ) = 100,000,000 USD. Payments are veery 3 month.
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The remaining life time is 14 months. Average bid and offered rates currently
being swapped for 3 month is 13% p.a. for all maturities. One month ago the
3 month LIBOR was 11.8% p.a.

All rates are compounded quarterly.

Compute the value of the swap in two different ways.

ASK QUESTION ON QUARTERLY COMPOUNDING, SWAP RATE THAT
IS THE SAME FOR ALL MATURITIES IMPLIES THAT SPOT RATE ALSO
HAS THAT VALUE

Dates at which cash flows occur: We have to find out the cash flows and
the dates at which they occur. We have an interest rate swap with a
remaining life time of 14 months and we exchange 3 month LIBOR for a
fixed rate, so payments are every 3 month. This that the swap must have
been initialised 1 month ago. So the swap was initiated at ¢ — 1/12 and
cash flows will occur at ¢t 4+ 2/12,¢ +5/12,¢ + 8/12,¢ 4+ 11/12,¢ + 14/12.

Discount factors: we will need the discount factors to discount the cah flows
at each of these dates. We do not have the zero coupon rates, but we know
that the swap rates for all maturities are So+ = 0.13,V¢t. We can compute
the discount rates from these swap rates by taking into account that it is
the rate at which the discounted cash flows for a bond sum up to the face
value of the bond or

e we can use the swap rate Sp 2,12 = 0.13 to find the discount factor
at t +2/12. Indeed, for a swap with maturity ¢ + 2/12 we have:
The first disocunt factor is for ¢t +2/12 !

discounted interest at t=2/12 discounted face value

F=F ((1 1 0.13/4)%/12 1) % DFY(0,2/12) + F x DF*(0,2/12),
we find DF*(0;2/12) = — 0.9789037

1

1+(140.13/4)8/12—1

e we can use the swap rate Sy 5,12 = 0.13 to find the discount factor
at t +5/12. Indeed, for a swap with maturity ¢ + 5/12 we have:

discounted interest at t=2/12

F = F ((1 +0.13/4)273/12 _ 1) x DF4(0,2/12)

discounted interest at t=5/12

+ F ((1 +0.13/4)3/12 1) x DF%(0,5/12)
discounted face value

+ F x DF*0,5/12)

Note that 4 x 3/12 = 1 so we have So
1 = 0.02155097x DF4(0,2/12)40.0325x DF4(0, 5/12)+DF4(0,5/12),
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forward rates:

Cash flows:

we already computed that DF*(0,2/12) = 0.9789037 and we find

that
_ 1-0.02155097x0.9789037 __
DF*(0,5/12) = 1+0'0§25 = 0.9480907

we can use the swap rate Spg/12 = 0.13 to find the discount factor

at t +8/12:
4 __ 1-0.02155097x0.9789037—0.0325x0.9480907 __
DF4(0,8/12) = X0.9789037-0.0325% = 0.9182477

we can use the swap rate Sp 11,12 = 0.13 to find the discount factor
at t+11/12:
DF*(0,11/12) =
0.889344

we can use the swap rate Sp 14/12 = 0.13 to find the discount factor
at t+14/12:
DF*(0,14/12) =

1-0.02155097x0.9789037—0.0325x0.9480907—0.0325x0.9182477 __
1+0.0325 o

1+0.0325
0.8613501
Summarising:

DF(0,2/12)  0.9789037

DF(0,5/12)  0.9480907

DF(0,8/12)  0.9182477

DF(0,11/12)  0.889344

DF(0,14/12)  0.86153

The first rate is 0.118 !, it was known at initialisation of the swap
but is only paid after 3 month.

The other forward rates can be found as DF(015/12) = DF(012/12) DF(2/112 5713)

or
(4 foprasiaf4Y<2/12 = BEGIND o
f2y12,5/12 = 4% — 1 =0.1300002
fs/12,8/12 = 4% —1=0.1299998

fe/12,11/12 = 4% —1=0.1300001

J11/12,14/12 = 4% — 1 =0.1300001

Watch out, interest for the first period also is 2 months, the other
are also three

if mAt = 1 then interest calculations are simplified !!I: 100 x [(1 4+
LSY—1/12,14/12)4X3/12 —1] =100 x S_1/12,14/12/4

t ftl,t2 S—l 12,14/12 DF(O, t2) Fix leg Floating leg
2/12 0.118 0.1 0.9789037 2.8877659  2.4472593
5/12 0.13 0.1 0.9480907 3.0812948  2.3702268
8/12 0.13 0.1 0.9182477  2.984305 2.2956193
11/12  0.13 0.1 0.889344 2.890368 2.22336
14/12  0.13 0.1 0.86153 2.7999725 2.153825

The value is this =3.153416 million EUR.

Second method: difference of two bonds
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11.4 Option strategies.

11.5 Option pricing and hedging.
11.5.1 Q5.1

So = 30, Sr—3/19.4 = 325, S7—s/12.4 = 27.5, 7 = 0.08.

Value of a European Call on the stock, call has K = 28 We have no in-
formation on ¢ so we will have to use trees, if we know u and d. We
do know these because we know Sp—_3/12.,, = u+ So, S7=3/12,4 = d - Sp 50

_ 325 __ _ 275 _
u= 325 = 10833333 and d = 25 = 0.9166667.

Schema for the spotprice between ¢t = 0 and ¢ = 3/12:
u- Sy =32.5(= u)

So =30

d-Sy= 275( - d)

To compute the value of the call we use the schema for the European call
between t = 0 and ¢ = 3/12:

Compute backward ECy_3/15 = (p- EC} + (1 — p)ECH)e~3/12
ECs3)1.0 = max(32.5 — 28,0) = 4.5

ECy =77

EC3/12’U = max(275 - 28, O) =0

For computing ECy we have to compute the expected value of the
call at t = 3/12 using the risk neutral probability and then dis-
count.

The formula for the risk neutral probability is p = e;T:dd and using the

values supra we find that p = 0.6212081. p is the risk neutral probability
for an upward move. As there are only two options, the risk neutral
probability for a downward move is 1 — p = 0.3787919

In order to get the expected value you multiply each outcome by its own
risk neutral probability and then sum: 0.6212081 x 4.5+ 0.3787919 x 0 =
2.7954365.

This is the expected value at t = 3/12 so after discounting we find ECy =
2.7954365¢0-08x3/12 — 9 7400831

So ECy = 2.7401.
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verify that no arbitrage and risk neutral valuation give the same result:
Risk neutral valuation is the method above.

The "o arbitrage” result is that we buy A shares of stock and we lend B
money, where A and B are as in the section on the replicating portfolio.
Then ECO = ASO + B.

. _ EC,—EC4 _ _45-0  __ _ uBCy—dEC, _
The formula for Ais A = wSe—dSy = 5_27E — 0.9and B = u—dyerT
1.0833333x0—0.9166667x4.5 _ _ _ 94 9500978

(1.0833333—0.9166667)e0-08x3/12 —
We find that ECy = ASy + B = 0.9 x 30 — 24.2599278 = 2.7400722

11.5.2 Q5.2

European put, T = 4/12, K = 2300, I, = 2323, r = 0.05/annum, q =
0.0285/annum, o = 0.3, Rates are in continuous compounding.
What is the value of the European put? What if it were an American put ?
Now we have to ﬁnd u and d via the volatility, i.e.

u=e VA = /12 = 1,0904632 , d = e~°VAF = 0.9170415

We can do it in a fast way now, becaube we need only the stock prices at
the fourth step and we can compute these directly:

There are four steps in the tree, to the highest stock price is when we go four
times up, i.e. Sou* = 3284.6812501. If we know the (risk neutral) probability
to go up in one move, p, then the probability to go up four times in fot moves
is (Hpi(1—p)it.

If we go up three times and down once, then the stock price after four moves
is Soudd = 2762.3023991. The probability of going three times up and once
down is (é)p‘g(l —p)A3.

The point is to find the risk neutral probability p, we have seen that, for
a non-dividend paying stock it is p = £ m_d
e(r— «J)At d __

for a dividend paying stock this

- £(0.05-0. 02&,)1/1270 9170415
becomes p = 1.0904632—0.0170415 = 0.4887034

Note that for a put the value at maturity is max(K — S4/120,0)
So we find the following table:

path S4/12 EC, /12 probability

4 times up Sou? = 3284.6812501 max(2300 — Sy /19,0) =0 (1 — p)3—4 = 0.0570387
3 up, 1 down Sgudd = 2762.3023991 maz(2300 — Sy ,15,0) =0 gé};ﬁ;(l p)4—3 = 0.2387057
2 up, 2 down Sou?d? = 2323 maw(2300 — Sy /15,0) =0 (2);; (1 — p)4—2 = 0.374617
1 up, 3 down Sou dd = 1953.5620002 maw(2300 — Sy /q5,0) = 346, 4380 g%;pl(l — p)4—1 = 0.2612942
0 up, 4 down  Sguld? = 1642.8775242  maz (2300 — S, /1,,0) = 657, 1225 3 p0(1 — p)4—0 = 0.0683444

Next you multiply each outcome by its probability, sum and discount so we
have (346.4380 x 0.2612942 + 657, 1225 x 0.0683444)e~0-95%4/12 — 1331943744

American option, how do you find that 7

To find the American option value we need to work through the whole tree,
one step at a time:

First for the stock index:
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3284.6813

<3012.1891

< 2762.3024

< <2533.1460
< O

4 <1130.2874
<]

<[971.4974

2323

1953.5620

1642.8775

For the European put option:

346.4380

657.1225

For an American put:

the only difference is that we can exercise an American put before ' = 4/12,
so if we keep it until ¢ = 4/12 then there is no difference !

If we execute it at t = 3/12, then (look at the tree with the spot prices) the
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American put is worth maz (2300 — S3/12,0), so then the spot prices at t = 3/12
are from top to bottom: 3012.1891, 2533.1460, 2130.2874, 1791.4974 resp. So
max(2300 — S3/12,0) is resp. 0,0,0 169.7126, 508.5026.

If you compare this to the tree of the European option, then you see that
there is a benefit in exercising the Amerian put for the value of 508.5026 because
that yields more than keeping the put !!

But, as one nod has changed, we must re-compute the other nodes in the
previous step !!!

(0.4887 x 176.3960 + (1 — 0.4887) x 508.5026)e~"*/12 = 344.7625969

So we get the following picture
0

657.1225
Apply the same procedure to t = 2/12, ...

11.5.3 Q5.3

So =50, 0=02,r=003 K=>55T=3/12.

Three month call / put value, step = 1/12: u = eoVAL = 02V/1/12
1.0594342, d = e~ VAL = ¢=0-2V/1/12 — () 9439

d — ().5072359

erAt _
u—d

Risk neutral probability p =

First for the stock index:
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Sou® = 59.4554972

<Qou? = 56.1200451

<Qou = 52.9717118 Sou?d = 52.9717118

<Qod = 47.1950011 Sould? = 47.1950011

<Sod? = 44.5473626

Sod?® = 42.0482566

call: the value of a call after three steps is maxz (S —>55,0), the probabili-
ties of the outcomes can be computed using the Binomial distribution,
the schema is

4.4554972, (3)p*(1 — p)*~3 = 0.1305058

0,(3)p*(1 — p)*~2 = 0.3803473

0,(3)p(1 — p)>~! = 0.3694957

0,(3)p°(1 — p)3~° = 0.1196512
The expected payoff at ¢ = 3/12 is 4.4555 x 0.1305058 = 0.5814686
and discounted it is 0.5814686e~"*3/12 = 0.5771239
put: In a similar way you can find the value of the put.
Put-call parity: Just check the formula

The American put: Start from the diagram of the European put at
the end and compute one step backwards:
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9969721
2.0282882
862672

7.8049989

12.9517434

Compare this at t = 2/12 to the result if the American option would
be executed, if favorable then change the schema: so you have to
look at the tree with the spot prices at ¢t = 2/12, we find (from top
to bottom) 56.1200451, 50, 44.5473626. We know that we have a put
with K = 55, so at t = 2/12 this would be worth maxz(K — S5/12,0)
so resp. 0, 5, 10.4526374. The values that are higher than in the tree
above, for t = 2/12 should therefore be replaced by more favorable
values in case of an early exercise of the American put:

0
Q. 9969721

2.0282882

<{6676708

12.9517434

These new values yield values at ¢ = 1/12, the expected value (risk
neutral) discounted so : (0.5072359 x 0.9969721 + (1 — 0.5072359) x
5)e0:03/12 = 2962106 and below (0.5072359 x 5 + (1 — 0.5072359) x
10.4526374)e9-93/12 = 7.6676708

Then we do the check at t = 1/12, the spot prices are 52.9717118,
47.1950011 so the put with exercise price is worth 0, resp 7.8049989
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<Q.9969721

2.0282882

12.9517434

Computing the last step backward we find APy = (0.5072359 x
2.962106 + (1 — 0.5072359) x 7.8049989)e~0-03/12 = 5 3351552

With Black-Scholes: Just substitute the values in the formula of black/Scholes
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11.6 Exam level questions
11.6.1 Exam Q1

We use forward exchange contracts to hedge currency risk.

e on Sept 30, 2008 we enter a forward contract to sell 10,000,000 USD for
receipt of EUR on June 30 2009. How much EUR do you expect to receive
? What is the forward exchange rate 7

Interest rates are 9-month rates in simple annual compounding: Sy =
1.40USD/EUR, Rysp = 2.00%, Reur = 3.00%

Procedure to follow for CURRENCY FORWARDS.

1. Currency forwards are assets with a percentage profit, so we will use the
formula Fy = Spe"~97T) however you there are two currencies so we first
must determine which ine is the asset and which one is the currency we
use to pay

— The currency that is mentioned in the qunatity-parameter @ of
the contract is the asset because @ tells how many assets will be
sold/bought at T. In this exercise it is @ = 10,000,000 USD, so
the asset is 1USD.

— The currency used to pay is the other one so it is EUR.

2. Form this it follows what r and q are: r is the risk free rate on the currency
used to pay, so r = RPUR ¢ is the rate of profit on the asset, so ¢ = RVP;

3. ALWAYS check the compounding rule. In this excercise it is simple annual
comounding, so the formula we will have to use for the value in the contract
is

Fs,EUR/Asset _ SEUR/Asset 1+ RtEURAt (30)
! k 1+ RYSPAt

4. for the value value of the contract is the discounted value of F; — Fjy so we
must know the discounting frquency and also the discount rate.

— The discounting frequency for this excercise is simple annual account-
ing

— the discount rate is the one one the currency that is used for paying,
therefore REVE

— The exercise says that we sell so we have a short position so we need
Fy — F; So the formula to use is:

, . ) 1
tEUR/Asset _ (FOEUR/Asset B FtEUR/As et) - ~EURAG (31)
t

B D E SD 1+REVE(T—-0
From the above formulas we know that £’ UR/USD _ So UR/U 11}%%57[,&_0;,
0

where SEVR/USD 1 gUSD/EUR _ /1 4 EUR/USD, REVR = 0.03,
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T = 9/12, RYSP = 0.02, so we find that F;ZUR/USP — 07195637
EUR/USD.

We are asked to use the same convention as in the exercise, so it should
be in USD/EUR so Fg'V9P/FUR — 1 3897311 USD/EUR.

At T we will sell 10,000,000 Assets (=USD) at 0.7195637 EUR/USD, so
we will receive 7,195, 636.87544 EUR

e At the year end, December 30, 2008 se have Sy = 1.35 USD/EUR, Rysp =
0.5%, Reur = 2%, what is the new forward exchange rate for delivery
June 30, 2009 ? What is the value of the contract at that date ?

s,EUR/USD EUR/USD 1+REVE(T—¢
From the above formulas we know that F; ;’ / =5 / JRtUsiDgT_t;,
t

where SFVR/USD — 1/ gUSD/EUR _ 4 /1 35 EUR/USD, REVE = (.02,
T =9/12 - 3/12 = 6/12, RVSP = 0.005.

We find that FtS’EUR/USD = (.7462824 EUR/USD. So, in the conventions
of the exercise F{"V5P/EUR — 1 3399752 USD/EUR.

tEUR/Asset _ (FOE'UR/Asset_FtEUR/Asset) 1+RtE[1]R6/12 — —0.0264542 EUR/USD

So we @ = 10,000,000 USD we have —264, 542.12375 EUR

11.6.2 Exam Q2

I entered a forward contract to buy a share on 31/12/2009. The delivery date
is 30/9/2010. After six months, the company pays a dividend. Furthermore
So = 50 EUR, Ry, = 4%, Rem = 2%, Den, = 2 EUR.
e determine the forward price.
Fy = (So — Ip)(1 + rAt), where simple annual compounding is assumed.
Ip=2/(1+0.02 x 6/12) = 1.980198.
So =50 EUR, r =0.04, T'=9/12.
So Fy = (50 —2/(140.02%6/12)(1 + 0.04 x 9/12) = 49.460396 EUR.
e 31/3/2010 the stock trades at 45 EUR. The company anounced to scrap

its dividend. What would be the value of the contract at 31/3/2010 ?
So = 45 EUR, Rgy = 4%, D3, = 0 EUR.

, where simple annual compounding is assumed.
I, =0.

S; =45 EUR, r = 0.04, At = 6/12.

So F; =45(1+0.04 x 6/12) = 45.9 EUR.
fr=(Fr— Fo)ﬁ = —3.4905843
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11.6.3 Exam Q3

Hedge an interest rate exposure for @ = 100,000,000 EUR for the period
1/4/2010-30/6,/2010 using a forward rate agreement (FRA) with a fixed rate
of 3%. On 31/12/2009 the short-term interest rates in simple annual account-
ing (SAC) are:

Maturity (months) Rate (SAC)

3 2.5%
6 3.0%
9 3.5%
12 4.0%

e Wat is the fair value of the FRA. Note we are asked for the fair value of
the agreement, i.e. of the contract.

So we need Fy, Fy, and we are said to use SAC.

We have an interest rate in the contract, this rate was fixed at t = 0 so
FO is 3%

At 31/12/2009 we now have to find the from 1/4/2010 until 30/6/2010,
which is in the future so we look for a forward rate. As said we do not need
to know the formula, we can easily derive it using the schema in figure
We have to use SAC so (1+ Ry rT) = (1 + Rot)(1 + fio(T —t)) or

_ (14+Ro.7T)
for = ﬁ ( (1+1§0,Ttt) - 1)
where t = 3/12, T = 6/12, Ry, = 0.03, Ry = 0.025, so we find
fe.r = 0.0347826.

This is not the value of the contract !!

We now have a contract (FRA) with a rate fixed at 0.03 and the current
forward rate at 31/12/2009 is f, r = 0.0347826.

— With the contract you pay a rate of 0.03 on 100,000,000 EUR from
1/4/2010 until 30/6/2010, or 100000 x 0.03 x 3/12 = 750, 000.00000
at at T’

— With the current rate you pay a rate of f; = 0.0347826 on 100,000,000
EUR from 1/4/2010 until 30/6,/2010, or 100,000,000 x 0.0347826 x
3/12 = 869, 565.21739 at T

So the possessor of the contract has a ”rate advantage” 869,565.21739 —
We are asked for the value of the contract at 31/12/2019 and we have the

value at T=30/6/2010 so we have to discount this value using SAC:
so we find that f; = 117,798.24373 EUR
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11.6.4 Exam Q6

Par interest rate swaps on an annual basis:
Maturity  Rate

1 2.00%
2 2.50%
3 3.00%
4 3.50%

e Use bootstrapping to derive the cash flows after 1,2,3,4 years.
1= (1+50,1)DF(0,1) = DF(0,1) = 15555 = 0.9803922
1+4502DF(0,1)4 (14 50,2) DF(0,2) = DF(0,2) = 1=0:025x0.5503922
0.9516978
1+ S(]’gDF(O, 1) + SO’3DF(0, 2) + (1 + S(]’3)DF(0,3) — DF(0,3) =

1-0.03x0.9803922—0.03x0.9516978 _
9220 = 0.9145993

e IMPORTANT: swap rates are not compounded, they are paid every pe-
riod, so the forward rates can not be derived with the swap rates, you
MUST used the discount factors !!

Using the procedure schematised in figure (1} so (1 4+ Ro1)(1 + f12) =
(1+ R0,2)2 but the table above does not give the R;  but the swap rates

Sy M

The rates R; r are implicit in the discount factors, se re-write this with
. DF(0,1

discount factors !! m(l + f12) = m or (1+ f12) = DFEO,Q; =

1.0301507

We are asked for the coupon rate for a bond startinf in one year and
maturing after 2 years , so we need f; 3, similar as before we find that

fiz = g?gg’;g — 1 = 0.0719363 but we need the coupon rate, fi3 is
over two year, so we have to divide f1,3/2 = 0.0359682 or, in case of
compounding (1+z)?> =1+ fi 3 and solve forz and x = /1 + fi3—1=

0.0353436

check because here I don’t know, how to find the coupon rate 77777

11.6.5 Exam 7

The forward rates are given: fo1 = Ro1 = 0.02, fi2 = 0.025, fa3 = 0.03,

f3.4 =0.035.

Discount rates: DF(0,1) = ﬁ = 0.9803922, DF(0,2) =
0.9564802, DF(0,3) = 0.9286215, DF'(0,4) = 0.8972188

1 o
1+Ro,1 1+ f1,2

Swap rate: The fixed rate that makes a (fix rate) bond equal to its face value
o

watch out, each term is interest for one single year, also a term to discount
F in last period !
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F = 80’4 x F' x DF(O,l)—f—SOA x ' x DF(0,2)+SO,4 x F' x DF(0,3)+
S04 X F'x DF(0,4) + F x DF(0,4), F is on both sides , solve for Sg 4
11.6.6 Exam 8

DF(0,6/12) = 0.98, DF(0,9/12) = 0,965, DF(0,1) = 0.955, DF(0,2) =? , DF(0,3) =
0.85.

Forward rate: f5/129/12¢ follows from DF(01,9/12) = DF(01,6/12)(1+f6/1279/12)

Find DF(0,2) : compute DF(0,2) is 2-year swap rate is 0.04.

The problem here is that we do not know the dates of the cash flows in
the swap.

If (722111) the cash flows in the swap are exchanged every year, then the
swap rate is the fixed rate that makes the present value of a bnd equal to
its face value:

watch out, interest every year !! and discount it

interest first interest second face after 2y
F=0.04xFxDF(0,1)+0.04 x F x DF(0,2)+ F x DF(0,2)

The only unknown here is DF'(0,2) so we can compute it !

What if cash flows are paid quarterly 77

Then DF(0,1) = W or Rog =4x { m —1=0.04631
In that case we would find

DF(0,6/12) = gassoac e = 0-977241

DF(0,9/12) = L = 0.9660565

T (1+0.04630996/4)1%9/12
These do not seem to be the same values as given supra, so I think it is
not quatrely.

Fixed rate for 3y swap: we now know DF(0,1), DF(0,2), DF(0,3) so we can
find Sp 3 using a bond with a fixed rate:
interest first interest second interest third face after 3y
F=2Sy3xFxDF(0,1)+Sp3 x Fx DF(0,2)+ Sy 3 x F x DF(0,3)+ F x DF(0,3)

The F is on both sides so can be dropped, DF(0,1), DF(0,2) and DF(0,3)
are known, so this can be solved for Sy 3.

11.6.7 Exam 9

THE SOLUTION IN HIS SLIDES IS EASIER, BUT BE SURE YOU UNDER-
STAND THE START FORMULA

see forward starting swap for an explanation !

MAKE THIS ONE, IT COMBINES ALL THE ELEMENTS !!!
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Ro,6/12 = 0.014, 50 1 = 0.017, f12/12,18/12 = 0.018, S0 2 = 0.02, fa4/12,30/12 =
0.025.

t fix float DF given
0

S6/12  start swap s start swap ~ Rggp=0014
12/12 f6/12,12/12 x F x 6/12 DF(O,12/12) S()’l =0.017
18/12 —S x F x 12/12 f12/12,18/12 X F x 6/12 DF(0,18/12) f12/12,18/12 = 0.018
24/12 f18/12,24/12 X F X 6/12 DF(0,24/12> SO,Q = 002

30/12 —-Sx F x 12/12 f24 12,30/12 x F' % 6/12 DF(0,30/12) f24 12,30/12 = 0.025
ITAMNOT SURE ABOUT THIS? SO PAY ATTENTION IN THE LESSON:
I would say that the present value of all these flows must be zero, because
else there are arbitrage possibilities. So,

0 = fo/12,12/12 X F' x 6/12 x DF(0,12/12)
(=S x F'x12/12 + fi2/12,18/12 X F' x 6/12) x DF(0,18/12)
fis/12,24/12 X F'x 6/12 x DF(0,24/12)
(=S x F'x 12/12 + fas/12,30/12 X F % 6/12) x DF(0,30/12)

+ + +

0 = fo/12,12/12 X DF(0,12/12)
2S5 x DF(O, 18/12) + f12/12,18/12 X DF(O, 18/12)

+  fis/12,24/12 X DF(0,24/12)
— 28 x DF(O, 30/12) -+ f24/12730/12 X DF(O, 30/12)

25 x DF(0,30/12) + 28 x DF(0,18/12) = f5/12,12/12 X DF(0,12/12) +
f12/12,18/12XDF(07 18/12)+f18/12,24/12 xDF(0, 24/12)+f24/12,30/12XDF(O» 30/12)
or

_ fos1 x DF(0,1) + f1,15 x DF(0,1.5) + f1.52 x DF(0,2) + fa30/12 X DF(0,30/12)

s 2(DF(0,30/12) + DF(0,1.5))

Now the problem is reduced to finding all the discount factors (and with
these we can compute all the forward rates). As we have information (see
column "given” in the table) at every ¢+ that we have to find a discount factor
for, we will be able to find that:

e DF(0,6/12) can be found from DF(0,6/12) = m

e with Sy 1 you can find DF(0,1 = 12/12) using the fact that Sy is the
fixed rate that makes a bond havinf its face value, i.e. F'=F x Sy x 1x
DF(0,1)+ F x DF(0,1) from which you find DF(0, 1)

e DF(0,18/12) can be found from DF(0,18/12) = DF(0,12/12)% (7o
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e DF(0,2) can be found from Sp o similar as we did for DF(0,1)
e DF(0,30/12) can be found similar as we did for DF(0,18/12)

With these DF-values we can compute the f;, ;, and then solve the whole
equation for §
11.6.8 Exam 13

long call option, K= 60 EUR, M=3/12, knock-out > 65 EUR, Sy = 58 EUR,
o = 0.15, no dividends, r = 0.04 continuous compounding

METHOD 1 : backward computation

Payoff diagram: call option , but falling to zero at 65 7
payoff

60 65 St
Decompose into option strategies:
Binomial tree , At = 1/12.
u = e7VBE = 015x/1/12 _ 1 0442524
d = eV = ¢=0-15x/1/12 _ ( 9576228
p= efi;d, p = 0.5277191 is the risk neutral probability.

Note that we are not asked to compute ¢, if that would have been
the case we would have needed information on the p !!
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Substituting the values for v and d we find the prices in the figure
below:

t=0 1/12 2/12 3/12
Q

&

60.57

55.54

WHEN ABOVE 65 IT DROPS TO ZERO ! IK BEN NIET

The maturity is 3 months, so at the right hand side we have the
values when the option ends, so there the value of the European call
is maz (St — K,0), as K = 60 we
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EC3/12=0

ECs)15 = max(60.57 — 60,0) = 0.57

58

EC3/12 = mam(5554 — 60, 0) =0

ECs/15 = maxz(50.93 — 60,0) = 0

The rest is extremely easy, you go back one period, and at each
intersecting node you use the risk neutral probability to compute the
expected value in that node and discount it to the right period. e.g.
for month 2/3, the highest node (and knowing that p=0.4891769) we
find

NOT SURE HERE because of the 0 with tke knockout. SO PY
ATTENTION IN THE COURSE

ECy15 = (0.5277191 x 0 + (1 — 0.5277191) x 0.57)e~0-04x1/12 —
0.2997989

The node below has the value (0.5277191 x 0.57 x 0.57)e~0:04x1/12 —
0.2683043

The other EC5 /15 are similar and they are zero.

Then from ECj/15 you move back to EC /13 ...
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Compute backward EC;_y /12 = (p- EC{ + (1 — p)ECH)e~T/12
EC3/15=0

<t Cy/12 = 0.2683043

i 01/12 = 02822362 EC3/12 = 057

ECy = 0.2226687 EUR LC5)12 = 0.2997989

< 01/12 = 0.1576831 EC3/12 =0

EC3/12=0

The answer is ECy = 0.22 EUR.
HIJ ZOU HIER OOK KUNNEN VRAGEN NAAR A en/of naar g
IK WEET NIET HOE HET VOOR EEN PUT GAAT, CALL-PUT parity
29
METHOD 2 : Binomial probabilities

You have to know all possible values for the option at maturity, and their

probabilities (note that p = 0.5277191 and (Y) = A=)
t value probability
3/12 0 (3)p*(1—p)° = 0.1469631
3/12  0.57 22 2 1 —p)' =0.3945729
3/12 0 gl = 0.353122
3/12 0 (3)p° 3 =0.1053419

We have to multlply each value with its probability and sum to get the
expected value at maturity. The values equal to zero will obviously not
contribute so you find for the expected value at maturity E(ECs,,) =
0 % 0.1469631 + 0.57 x 0.3945729 4+ 0 x 0.353122 4+ 0 x 0.1053419 = 0.57 x
0.3945729 = 0.2249066.

Discounting at the risk free rate r = 0.04 with At = 3/12 gives for the
value today ECy = 0.2249066e~0-04%3/12 = (.2226687 which is the same
value as the one we found with backward computation.

The answer is ECy = 0.22 EUR.
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11.6.9 Exam 14

Call option on a future, T = 3/12, K = 60. The future price today is Fy = 58,
r=20.01, 0 =0.5.

Use a hedging portfolio to find ECy: This is explained in section [7.4 We
have to consturct a portfolio of a loan B and sell A futures, such that this
portfolio has the same outcome as our option in t = 3/12.

u=e’VA and d = e VA are computed in the usual way, F, = Fyu,
F; = Fod. EC, = max(F, — K,0), ECy = max(Fy — K, 0).

. v
The risk neutral probability is p = +—=5.

u

Compute the value using a Binomial tree of three steps: This is sim-
ilar to Binomial trees we already handled, but with another definition of
EC,, EC,; and the risk neutral probability.

Delta hedge: The number of underlyings we have to have in our portfolio, or
A according to the formula in section [7.4]

11.6.10 Exam 15

(See Hull example 18.2.)

Put option, European

You sell the asset "EUR”, so the underlying is A = 1 EUR, the stock price
for A is Sy = 1.3 USD/A the strike price in the contract is K = 1.4 USD/A.
The money in which you pay the asset is USD.

r is the interest rate in the money you pay with, so r = 0.03 and it is like
a stock option with dividend yield because there is interest, the divident is on
the underlying asset A (EUR) so ¢ = 0.02.

The volatility is o = 0.1.

so u = eV = 01xV/2/12 1.0416696, d = 0.9599973

The risk neutral probability is for an option with dividend yield so p =

% = 0.510219

Construct the tree for the spot exchange rate: The tree is as below:
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Soutd® = 1.5306056

<Qould® = 1.4693773

<Qou2d® = 1.4105982 Soudd' = 1.4105982

<Qou'd® = 1.3541705 <Sou?d! = 1.3541705

SQ =13 Sou2d2 =1.3

<Qould = 1.2479965 <Soutd? = 1.2479965

<Sou'd? = 1.1980733 Soutd?® = 1.1980733

<Sould® = 1.1501471

Sould* = 1.1041381

Tree for the option, unit ? The put option will be exercised at T = 8/12
whenever the strike price K is above teh spot price at T because then the
price in the contract is advantageous to the owner of the put (he can sell
at K while at the spot he gets less than K. ). This gives the values at
T = 8/12 in the tree below:

The values at ¢ = 3/12 can be found using the risk neutral probability
and the discount factor e.g. (0.510219 x 0.1306056 + (1 — 0.510219) x
0.0105982)e~0-03%2/12 — 0.07147
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Q0974391 0.1

<Q. 1449647 149174

0.2019267

<Q.2466978

0.2958619
The asset is EUR and the money with which you pay is USD, so it is USD.

If it were an American option, would it be advantageous to exercise at node 0.2467 ?
If we would do that , then (see node in spot price tree) it would be worth
1.4 —1.1501471 = 0.2498529 If we wait (as in the European put tree) then
the value is 0.2467 which is less, so it is profitable to execute the American
option at that node.
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